Skip to main content
Log in

Virtual Element Method for Solving an Inhomogeneous Brusselator Model With and Without Cross-Diffusion in Pattern Formation

  • Published:
Journal of Scientific Computing Aims and scope Submit manuscript

Abstract

The virtual element method (VEM) is a recent technology that can make use of very general polygonal/polyhedral meshes without the need to integrate complex nonpolynomial functions on the elements and preserving an optimal order of convergence. In this article, the VEM is formulated and analyzed to solve the Brusselator model on polygonal meshes. Also an optimal a priori error estimate (under a small data assumption) is derived. Ample numerical experiments are performed to validate the accuracy and efficiency of the proposed scheme and to plot the Turing patterns of the Brusselator equation on a set of different computational meshes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15

Similar content being viewed by others

References

  1. Adomian, G.: The diffusion-Brusselator equation. Comput. Math. Appl. 29, 1–3 (1995)

    Article  MathSciNet  MATH  Google Scholar 

  2. Ang, W.-T.: The two-dimensional reaction-diffusion Brusselator system: a dual-reciprocity boundary element solution. Eng. Anal. Bound. Elem. 27, 897–903 (2003)

    Article  MATH  Google Scholar 

  3. Beirão da Veiga, L., Lovadina, C., Vacca, G.: Virtual elements for the Navier-Stokes problem on polygonal meshes. SIAM J. Numer. Anal. 56, 1210–1242 (2018)

    Article  MathSciNet  MATH  Google Scholar 

  4. Beirão da Veiga, L., Russo, A., Vacca, G.: The virtual element method with curved edges, ESAIM. Math. Model. Numer. Anal. 53, 375–404 (2019)

    Article  MathSciNet  MATH  Google Scholar 

  5. Beirão da Veiga, L., Brezzi, F., Cangiani, A., Manzini, G., Marini, L.D., Russo, A.: Basic principles of virtual element methods. Math. Models Methods Appl. Sci. 23, 199–214 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  6. Beirão da Veiga, L., Brezzi, F., Dassi, F., Marini, L.D., Russo, A.: Lowest order virtual element approximation of magnetostatic problems. Comput. Methods Appl. Mech. Eng. 332, 343–362 (2018)

    Article  MathSciNet  MATH  Google Scholar 

  7. Beirão da Veiga, L., Brezzi, F., Marini, L.D., Russo, A.: The Hitchhiker’s guide to the virtual element method. Math. Models Methods Appl. Sci. 24, 1541–1573 (2014)

  8. Berrone, S., Borio, A., Manzini, G.: SUPG stabilization for the nonconforming virtual element method for advection-diffusion-reaction equations. Comput. Methods Appl. Mech. Eng. 340, 500–529 (2018)

    Article  MathSciNet  MATH  Google Scholar 

  9. Bertoluzza, S., Pennacchio, M., Prada, D.: BDDC and FETI-DP for the virtual element method. Calcolo 54, 1565–1593 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  10. Brezzi, F., Marini, L.D.: Virtual element methods for plate bending problems. Comput. Methods Appl. Mech. Eng. 253, 455–462 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  11. Ban, T., Wang, Y.: Numerical simulation of the Brusselator model with spatial spectral interpolation coordination method. Adv. Appl. Math. 9, 708–721 (2020)

    Article  Google Scholar 

  12. Cáceres, E., Gatica, G.N., Sequeira, F.A.: A mixed virtual element method for quasi-Newtonian Stokes flows. SIAM J. Numer. Anal. 56, 317–343 (2018)

    Article  MathSciNet  MATH  Google Scholar 

  13. Cangiani, A., Manzini, G., Sutton, O.J.: Conforming and nonconforming virtual element methods for elliptic problems. IMA J. Numer. Anal. 37, 1317–1354 (2017)

    MathSciNet  MATH  Google Scholar 

  14. Chen, L., Wang, F.: A divergence free weak virtual element method for the Stokes problem on polytopal meshes. J. Sci. Comput. 78, 864–886 (2019)

    Article  MathSciNet  MATH  Google Scholar 

  15. Dehghan, M., Abbaszadeh, M.: Numerical study of three-dimensional Turing patterns using a meshless method based on moving Kriging element free Galerkin (EFG) approach. Comput. Math. Appl. 72, 427–454 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  16. Dehghan, M., Abbaszadeh, M.: Variational multiscale element free Galerkin (VMEFG) and local discontinuous Galerkin (LDG) methods for solving two-dimensional Brusselator reaction-diffusion system with and without cross-diffusion. Comput. Methods Appl. Mech. Eng. 300, 770–797 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  17. Din, Q.: A novel chaos control strategy for discrete-time Brusselator models. J. Math. Chem. 56, 3045–3075 (2018)

    Article  MathSciNet  MATH  Google Scholar 

  18. Gierer, A., Meinhardt, H.: A theory of biological pattern formation. Kybernetik 12, 30–39 (1972)

    Article  MATH  Google Scholar 

  19. Goodwin, B., Trainor, L.: Tip and whorl morphogenesis in acetabularia by calcium-regulated strain fields. J. Theor. Biol. 117, 79–106 (1985)

    Article  Google Scholar 

  20. Gray, P., Scott, S.: Autocatalytic reactions in the isothermal, continuous stirred tank reactor: Isolas and other forms of multistability. Chem. Eng. Sci. 38, 29–43 (1983)

    Article  Google Scholar 

  21. Harrison, L.G.: Kinetic Theory of Living Pattern. Cambridge University Press, Cambridge (1993)

    Book  MATH  Google Scholar 

  22. Hussein, A., Aldakheel, F., Hudobivnik, B., Wriggers, P., Guidault, P.-A., Allix, O.: A computational framework for brittle crack-propagation based on efficient virtual element method. Finite Elem. Anal. Des. 159, 15–32 (2019)

    Article  MathSciNet  Google Scholar 

  23. Ilati, M., Dehghan, M.: Meshless local weak form method based on a combined basis function for numerical investigation of Brusselator model and spike dynamics in the Gierer-Meinhardt system. Comput. Model Eng. Sci. (CMES) 109, 325–360 (2015)

    Google Scholar 

  24. Jiwari, R., Singh, S., Kumar, A.: Numerical simulation to capture the pattern formation of coupled reaction-diffusion models. Chaos Solitons Fractals 103, 422–439 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  25. Jiwari, R., Tomasiello, S., Tornabene, F.: A numerical algorithm for computational modelling of coupled advection-diffusion-reaction systems. Eng. Comput. 6, 97 (2018)

    Google Scholar 

  26. Jiwari, R., Yuan, J.: A computational modeling of two dimensional reaction-diffusion Brusselator system arising in chemical processes. J. Math. Chem. 52, 1535–1551 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  27. Kagan, M.L., Kosloff, R., Citri, O., Avnir, D.: Chemical formation of spatial patterns induced by nonlinearity in a concentration-dependent diffusion coefficient. J. Phys. Chem. 93, 2728–2731 (1989)

    Article  Google Scholar 

  28. Kang, H., Pesin, Y.: Dynamics of a discrete Brusselator model: escape to infinity and Julia set. Milan J. Math. 73, 1–17 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  29. Kumar, S., Jiwari, R., Mittal, R.C.: Numerical simulation for computational modelling of reaction-diffusion Brusselator model arising in chemical processes. J. Math. Chem. 57(1), 149–179 (2019)

    Article  MathSciNet  MATH  Google Scholar 

  30. Lengyel, I., Epstein, I.R.: Modeling of turing structures in the chlorite-iodide-malonic acid-starch reaction system. Science 251, 650–652 (1991)

    Article  Google Scholar 

  31. Lin, Z., Ruiz-Baier, R., Tian, C.: Finite volume element approximation of an inhomogeneous Brusselator model with cross-diffusion. J. Comput. Phys. 256, 806–823 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  32. Li, M., Zhao, J., Huang, C., Chen, S.: Nonconforming virtual element method for the time fractional reaction-subdiffusion equation with non-smooth data. J. Sci. Comput. 81, 1823–1859 (2019)

    Article  MathSciNet  MATH  Google Scholar 

  33. Madzvamuse, A., Maini, P.K., Wathen, A.J.: A moving grid finite element method for the simulation of pattern generation by Turing models on growing domains. J. Sci. Comput. 24(2), 247–262 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  34. Mascotto, L., Perugia, I., Pichler, A.: A nonconforming Trefftz virtual element method for the Helmholtz problem: numerical aspects. Comput. Methods Appl. Mech. Eng. 347, 445–476 (2019)

    Article  MathSciNet  MATH  Google Scholar 

  35. Meinhardt, H.: Models of Biological Pattern Formation. Academic Press, London (1982)

    Google Scholar 

  36. Mittal, R.C., Jiwari, R.: Numerical solution of two-dimensional reaction-diffusion Brusselator system. Appl. Math. Comput. 217, 5404–5415 (2011)

    MathSciNet  MATH  Google Scholar 

  37. Mittal, R.C., Rohila, R.: Numerical simulation of reaction-diffusion systems by modified cubic B-spline differential quadrature method. Chaos Solitons Fractals 92, 9–19 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  38. Mora, D., Velásquez, I.: A virtual element method for the transmission eigenvalue problem. Math. Models Methods Appl. Sci. 28, 2803–2831 (2018)

    Article  MathSciNet  MATH  Google Scholar 

  39. Murray, J.D.: Mathematical Biology. Springer, Berlin (1989)

    Book  MATH  Google Scholar 

  40. Prigogine, I., Lefever, R.: Symmetry breaking instabilities in dissipative systems. II. J. Chem. Phys. 48, 1695–1700 (1968)

    Article  Google Scholar 

  41. Schnakenberg, J.: Simple chemical reaction systems with limit cycle behaviour. J. Theor. Biol. 81, 389–400 (1979)

    Article  MathSciNet  Google Scholar 

  42. Shakeri, F., Dehghan, M.: The finite volume spectral element method to solve Turing models in the biological pattern formation. Comput. Math. Appl. 62(12), 4322–4336 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  43. Shirzadi, A., Sladek, V., Sladek, J.: A local integral equation formulation to solve coupled nonlinear reaction-diffusion equations by using moving least square approximation. Eng. Anal. Bound. Elem. 37, 8–14 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  44. Siraj-Ul-Islam, Ali, A., Haq, S.: A computational modeling of the behavior of the two-dimensional reaction-diffusion Brusselator system. Appl. Math. Modelling 34, 3896–3909 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  45. Sun, M., Tan, Y., Chen, L.: Dynamical behaviors of the Brusselator system with impulsive input. J. Math. Chem. 44, 637–649 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  46. Tatari, M., Kamranian, M., Dehghan, M.: The finite point method for reaction-diffusion systems in developmental biology. Comput. Model. Eng. Sci. CMES 82(1), 1–27 (2011)

    MathSciNet  MATH  Google Scholar 

  47. Turing, A.M.: The chemical basis of morphogenesis. Philos. Trans. R. Soc. Lond. Ser. B Biol. Sci. 237, 37–72 (1952)

    MathSciNet  MATH  Google Scholar 

  48. Twizell, E.H., Gumel, A.B., Cao, Q.: A second-order scheme for the “Brusselator” reaction-diffusion system. J. Math. Chem. 26, 297–316 (2000)

  49. Tyson, J.J.: Some further studies of nonlinear oscillations in chemical systems. J. Chem. Phys. 58, 3919–3930 (1973)

    Article  Google Scholar 

  50. Yadav, O.P., Jiwari, R.: A finite element approach to capture Turing patterns of autocatalytic Brusselator model. J. Math. Chem. 57, 769–789 (2019)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Acknowledgements

The authors are very grateful to two reviewers for carefully reading this paper and for their comments and suggestions, which have improved the paper.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mehdi Dehghan.

Ethics declarations

Conflict of interest

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Dehghan, M., Gharibi, Z. Virtual Element Method for Solving an Inhomogeneous Brusselator Model With and Without Cross-Diffusion in Pattern Formation. J Sci Comput 89, 16 (2021). https://doi.org/10.1007/s10915-021-01626-5

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10915-021-01626-5

Keywords

Mathematics Subject Classification

Navigation