Skip to main content
Log in

Convergence Analysis of the Continuous and Discrete Non-overlapping Double Sweep Domain Decomposition Method Based on PMLs for the Helmholtz Equation

  • Published:
Journal of Scientific Computing Aims and scope Submit manuscript

Abstract

In this paper we will analyze the convergence of the non-overlapping double sweep domain decomposition method (DDM) with transmission conditions based on PMLs for the Helmholtz equation. The main goal is to establish the convergence of the double sweep DDM of both the continuous level problem and the corresponding finite element problem. We show that the double sweep process can be viewed as a contraction mapping of boundary data used for local subdomain problems not only in the continuous level and but also in the discrete level. It turns out that the contraction factor of the contraction mapping of the continuous level problem is given by an exponentially small factor determined by PML strength and PML width, whereas the counterpart of the discrete level problem is governed by the dominant term between the contraction factor similar to that of the continuous level problem and the maximal discrete reflection coefficient resulting from fast decaying evanescent modes. Based on this analysis we prove the convergence of approximate solutions in the \(H^1\)-norm. We also analyze how the discrete double sweep DDM depends on the number of subdomains and the PML parameters as the finite element discretization resolves sufficiently the Helmholtz and PML equations. Our theoretical results suggest that the contraction factor for the propagating modes depends linearly on the number of subdomains. To ensure the convergence, it is sufficient to have the PML width growing logarithmically with the number of subdomains. In the end, numerical experiments illustrating the convergence will be presented as well.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Arioli, M., Loghin, D.: Discrete interpolation norms with applications. SIAM J. Numer. Anal. 47(4), 2924–2951 (2009)

    Article  MathSciNet  Google Scholar 

  2. Bangerth, W., Hartmann, R., Kanschat, G.: deal.II—a general-purpose object-oriented finite element library. ACM Trans. Math. Softw. 33(4), 24 (2007)

    Article  MathSciNet  Google Scholar 

  3. Bermúdez, A., Hervella-Nieto, L., Prieto, A., Rodríguez, R.: An optimal perfectly matched layer with unbounded absorbing function for time-harmonic acoustic scattering problems. J. Comput. Phys. 223(2), 469–488 (2007)

    Article  MathSciNet  Google Scholar 

  4. Bramble, J.H.: Multigrid methods, volume 294 of Pitman Research Notes in Mathematics Series. Longman Scientific & Technical, Harlow; copublished in the United States with John Wiley & Sons, Inc., New York (1993)

  5. Bramble, J.H., Pasciak, J.E.: Analysis of a Cartesian PML approximation to acoustic scattering problems in \({\mathbb{R}}^2\) and \({\mathbb{R}}^3\). J. Comput. Appl. Math. 247, 209–230 (2013)

    Article  MathSciNet  Google Scholar 

  6. Brandt, A., Livshits, I.: Wave-ray multigrid method for standing wave equations. Electron. Trans. Numer. Anal. 6(Dec.), 162–181 (1997). Special issue on multilevel methods (Copper Mountain, CO, 1997)

  7. Chen, Z., Liu, X.: An adaptive perfectly matched layer technique for time-harmonic scattering problems. SIAM J. Numer. Anal. 43(2), 645–671 (2005)

    Article  MathSciNet  Google Scholar 

  8. Chen, Z., Xiang, X.: A source transfer domain decomposition method for Helmholtz equations in unbounded domain. SIAM J. Numer. Anal. 51(4), 2331–2356 (2013)

    Article  MathSciNet  Google Scholar 

  9. Cools, S., Vanroose, W.: Local Fourier analysis of the complex shifted Laplacian preconditioner for Helmholtz problems. Numer. Linear Algebra Appl. 20(4), 575–597 (2013)

    Article  MathSciNet  Google Scholar 

  10. Després, B.: Méthodes de décomposition de domaine pour les problèmes de propagation d’ondes en régimes harmoniques. Ph.D. thesis, Université Dauphine, Parix (1991)

  11. Druskin, V., Güttel, S., Knizhnerman, L.: Near-optimal perfectly matched layers for indefinite Helmholtz problems. SIAM Rev. 58(1), 90–116 (2016)

    Article  MathSciNet  Google Scholar 

  12. Engquist, B., Ying, L.: Sweeping preconditioner for the Helmholtz equation: moving perfectly matched layers. Multiscale Model. Simul. 9(2), 686–710 (2011)

    Article  MathSciNet  Google Scholar 

  13. Erlangga, Y.A., Oosterlee, C.W., Vuik, C.: A novel multigrid based preconditioner for heterogeneous Helmholtz problems. SIAM J. Sci. Comput. 27(4), 1471–1492 (2006)

    Article  MathSciNet  Google Scholar 

  14. Erlangga, Y.A., Vuik, C., Oosterlee, C.W.: On a class of preconditioners for solving the Helmholtz equation. Appl. Numer. Math. 50(3–4), 409–425 (2004)

    Article  MathSciNet  Google Scholar 

  15. Eslaminia, M., Guddati, M.N.: A double-sweeping preconditioner for the Helmholtz equation. J. Comput. Phys. 314, 800–823 (2016)

    Article  MathSciNet  Google Scholar 

  16. Gander, M.J., Graham, I.G., Spence, E.A.: Applying GMRES to the Helmholtz equation with shifted Laplacian preconditioning: what is the largest shift for which wavenumber-independent convergence is guaranteed? Numer. Math. 131(3), 567–614 (2015)

    Article  MathSciNet  Google Scholar 

  17. Gander, M.J., Nataf, F.: AILU: a preconditioner based on the analytic factorization of the elliptic operator. Numer. Linear Algebra Appl. 7(7–8), 505–526 (2000)

    Article  MathSciNet  Google Scholar 

  18. Gander, M.J., Nataf, F.: An incomplete LU preconditioner for problems in acoustics. J. Comput. Acoust. 13(3), 455–476 (2005)

    Article  MathSciNet  Google Scholar 

  19. Gander, M.J., Zhang, H.: A class of iterative solvers for the Helmholtz equation: factorizations, sweeping preconditioners, source transfer, single layer potentials, polarized traces, and optimized Schwarz methods. SIAM Rev. 61(1), 3–76 (2019)

    Article  MathSciNet  Google Scholar 

  20. Graham, I.G., Spence, E.A., Zou, J.: Domain decomposition with local impedance conditions for the Helmholtz equation with absorption. SIAM J. Numer. Anal. 58(5), 2515–2543 (2020)

    Article  MathSciNet  Google Scholar 

  21. Hagstrom, T., Kim, S.: Complete radiation boundary conditions for the Helmholtz equation I: waveguides. Numer. Math. 141(4), 917–966 (2019)

    Article  MathSciNet  Google Scholar 

  22. Ihlenburg, F., Babuška, I.: Dispersion analysis and error estimation of Galerkin finite element methods for the Helmholtz equation. Int. J. Numer. Methods Eng. 38(22), 3745–3774 (1995)

    Article  MathSciNet  Google Scholar 

  23. Ihlenburg, F., Babuška, I.: Finite element solution of the Helmholtz equation with high wave number. I. The \(h\)-version of the FEM. Comput. Math. Appl. 30(9), 9–37 (1995)

    Article  MathSciNet  Google Scholar 

  24. Ihlenburg, F., Babuška, I.: Finite element solution of the Helmholtz equation with high wave number. II. The \(h\)-\(p\) version of the FEM. SIAM J. Numer. Anal. 34(1), 315–358 (1997)

    Article  MathSciNet  Google Scholar 

  25. Kim, S.: Error analysis of PML-FEM approximations for the Helmholtz equation in waveguides. ESAIM Math. Model. Numer. Anal. 53(4), 1191–1222 (2019)

    Article  MathSciNet  Google Scholar 

  26. Kim, S.: Analysis of complete radiation boundary conditions for the Helmholtz equation in perturbed waveguides. J. Comput. Appl. Math. 367, 112458 (2020)

    Article  MathSciNet  Google Scholar 

  27. Kim, S.: Fractional order Sobolev spaces for the Neumann Laplacian and the vector Laplacian. J. Korean Math. Soc. 57(3), 721–745 (2020)

    MathSciNet  MATH  Google Scholar 

  28. Kim, S., Pasciak, J.E.: Analysis of a Cartesian PML approximation to acoustic scattering problems in \({\mathbb{R}}^2\). J. Math. Anal. Appl. 370(1), 168–186 (2010)

    Article  MathSciNet  Google Scholar 

  29. Kim, S., Zhang, H.: Optimized double sweep Schwarz method with complete radiation boundary conditions for the Helmholtz equation in waveguides. Comput. Math. Appl. 72(6), 1573–1589 (2016)

    Article  MathSciNet  Google Scholar 

  30. Leng, W., Ju, L.: An additive overlapping domain decomposition method for the Helmholtz equation. SIAM J. Sci. Comput. 41(2), A1252–A1277 (2019)

    Article  MathSciNet  Google Scholar 

  31. Lions, J.-L., Magenes, E.: Non-homogeneous Boundary Value Problems and Applications, vol. I. Springer, New York (1972)

    Book  Google Scholar 

  32. Modave, A., Royer, A., Antoine, X., Geuzaine, C.: A non-overlapping domain decomposition method with high-order transmission conditions and cross-point treatment for Helmholtz problems. Comput. Methods Appl. Mech. Eng. 368, 113162 (2020)

    Article  MathSciNet  Google Scholar 

  33. Nataf, F., Nier, F.: Convergence rate of some domain decomposition methods for overlapping and nonoverlapping subdomains. Numer. Math. 75(3), 357–377 (1997)

    Article  MathSciNet  Google Scholar 

  34. Schädle, A., Zschiedrich, L.: Additive Schwarz method for scattering problems using the PML method at interfaces. In: Domain Decomposition Methods in Science and Engineering XVI, volume 55 of Lect. Notes Comput. Sci. Eng., pp. 205–212. Springer, Berlin (2007)

  35. Stolk, C.C.: A rapidly converging domain decomposition method for the Helmholtz equation. J. Comput. Phys. 241, 240–252 (2013)

    Article  MathSciNet  Google Scholar 

  36. Stolk, C.C.: An improved sweeping domain decomposition preconditioner for the Helmholtz equation. Adv. Comput. Math. 43(1), 45–76 (2017)

    Article  MathSciNet  Google Scholar 

  37. Stolk, C.C., Ahmed, M., Bhowmik, S.K.: A multigrid method for the Helmholtz equation with optimized coarse grid corrections. SIAM J. Sci. Comput. 36(6), A2819–A2841 (2014)

    Article  MathSciNet  Google Scholar 

  38. Toselli, A.: Overlapping methods with perfectly matched layers for the solutions of the helmholtz equation. In: Lai, C.H., Bjøstad, P.E., Cross, M., Widlund, O.B. (eds.) Eleventh International Conference on Domain Decomposition Methods, pp. 551–558. DDM.org (1990)

  39. van Gijzen, M.B., Erlangga, Y.A., Vuik, C.: Spectral analysis of the discrete Helmholtz operator preconditioned with a shifted Laplacian. SIAM J. Sci. Comput. 29(5), 1942–1958 (2007)

    Article  MathSciNet  Google Scholar 

  40. Vaněk, P., Mandel, J., Brezina, M.: Two-level algebraic multigrid for the Helmholtz problem. In: Domain Decomposition Methods, 10 (Boulder, CO, 1997), volume 218 of Contemp. Math., pp. 349–356. American Mathematical Society, Providence, RI (1998)

  41. Vion, A., Geuzaine, C.: Double sweep preconditioner for optimized Schwarz methods applied to the Helmholtz problem. J. Comput. Phys. 266, 171–190 (2014)

    Article  MathSciNet  Google Scholar 

  42. Yang, Z., Wang, L.-L., Gao, Y.: A truly exact perfect absorbing layer for time-harmonic acoustic wave scattering problems. SIAM J. Sci. Comput. 43(2), A1027–A1061 (2021)

    Article  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Seungil Kim.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

This research of the first author was supported by Basic Science Research Program through the National Research Foundation of Korea (NRF-2018R1D1A1B07047416) funded by the Ministry of Education, Science and Technology. Funding was provided by Xi’an Jiaotong-Liverpool University (Grant Nos. KSF-P-02, RDF-19-01-09)

Appendix

Appendix

In this section, we provide the proof of Lemma 4.9.

Proof of Lemma 4.9

We will estimate

$$\begin{aligned} \chi (w)^{2N_p} = \left( (1+iw+{\mathcal {R}}_{\chi }(w))^{\frac{1}{iw+{\mathcal {R}}_{\chi }(w)}}\right) ^{\frac{2\beta }{h}(iw+{\mathcal {R}}_{\chi }(w))}:={\mathfrak {a}}^{\mathfrak {w}} \end{aligned}$$

where

$$\begin{aligned} {\mathfrak {a}}=(1+iw+{\mathcal {R}}_{\chi }(w))^{\frac{1}{iw+{\mathcal {R}}_{\chi }(w)}} \ \text { and }\ {\mathfrak {w}}=\frac{2\beta }{h}\left( iw+{\mathcal {R}}_{\chi }(w)\right) =2\mu _{h,\ell }\sigma _0\beta \left( i+\frac{{\mathcal {R}}_\chi (w)}{w}\right) . \end{aligned}$$

Since \({\mathfrak {a}}\rightarrow e\) and \({\mathcal {R}}_{\chi }(w)/w\rightarrow 0\) as \(w\rightarrow 0\), for any \(\epsilon >0\) we can take a positive constant \(\delta \) small enough so that

$$\begin{aligned} \sigma _r\frac{|\text {arg}({\mathfrak {a}})|}{\ln |{\mathfrak {a}}|}<\sigma _i\epsilon \ \text { and }\ \left| \sigma _0\frac{{\mathcal {R}}_{\chi }(w)}{w}\right| < \epsilon \min \{\sigma _r,\sigma _i\}. \end{aligned}$$
(7.1)

for \(|w|<\delta \).

Noting \(|{\mathfrak {a}}^{\mathfrak {w}}| = e^{\mathfrak {R}({\mathfrak {w}})\ln (|{\mathfrak {a}}|)-\mathfrak {I}({\mathfrak {w}})\text {arg}({\mathfrak {a}})},\) we need to estimate \(\mathfrak {R}({\mathfrak {w}})\) and \(\mathfrak {I}({\mathfrak {w}})\). First, for \(\mu _{h,\ell }^2>0\) by using the second inequality of (7.1) we have that

$$\begin{aligned} \mathfrak {R}({\mathfrak {w}})< -2\mu _{h,\ell }\sigma _i\beta (1-\epsilon ) \ \ \text { and }\ \ |\mathfrak {I}({\mathfrak {w}})|< 2\mu _{h,\ell }\sigma _r\beta (1+\epsilon ). \end{aligned}$$

The first inequality of (7.1) with the above estimates leads us to

$$\begin{aligned} \mathfrak {R}({\mathfrak {w}})\ln (|{\mathfrak {a}}|)-\mathfrak {I}({\mathfrak {w}})\text {arg}({\mathfrak {a}})&< -2\mu _{h,\ell }\sigma _i\beta \ln (|{\mathfrak {a}}|)((1-\epsilon )-\epsilon (1+\epsilon ))\\&< -2\mu _{h,\ell }\sigma _i\beta \ln (|{\mathfrak {a}}|)(1-3\epsilon ). \end{aligned}$$

Due to the convergence of finite element eigenvalue approximations, there is \(0<\epsilon _h<\epsilon _*\) for each \(0<h\le h_0\) such that \(\mu _{h,\ell }>\mu _{\min }-\epsilon _h\) for all \(\ell \) and \(\epsilon _h\rightarrow 0\) as \(h\rightarrow 0\). Thus we can further show that for \(0<h\le h_0\)

$$\begin{aligned} \mathfrak {R}({\mathfrak {w}})\ln (|{\mathfrak {a}}|)-\mathfrak {I}({\mathfrak {w}})\text {arg}({\mathfrak {a}}) <-2(1-3\epsilon )\beta \ln (|{\mathfrak {a}}|)(\sigma _\mu -\epsilon _h\sigma _i) \end{aligned}$$

In the same way, one can show that for \(\mu _{h,\ell }^2<0\)

$$\begin{aligned} \mathfrak {R}({\mathfrak {w}})\ln (|{\mathfrak {a}}|)-\mathfrak {I}({\mathfrak {w}})\text {arg}({\mathfrak {a}}) <-2(1-3\epsilon )\beta \ln (|{\mathfrak {a}}|)(\sigma _\mu - \epsilon _h\sigma _r). \end{aligned}$$

Thus, we have

$$\begin{aligned} \lim _{w\rightarrow 0}|\chi (w)|^{2N_p} \le e^{2\epsilon _h(1-3\epsilon )\sigma _{M}\beta } e^{-2(1-3\epsilon )\sigma _\mu \beta } \end{aligned}$$

where \(\sigma _M=\max \{\sigma _r,\sigma _i\}\). Since \(\epsilon \) can be arbitrarily small, it holds that

$$\begin{aligned} \lim _{w\rightarrow 0}|\chi (w)|^{2N_p} \le e^{2\epsilon _h\sigma _M\beta }e^{-2\sigma _\mu \beta }. \end{aligned}$$

From the fact that \(e^{\epsilon _h\sigma _M\beta }\rightarrow 1\) as \(h\rightarrow 0\), it then follows that for any \(\epsilon >0\) there exist \(0<\delta _0\) and \(0<{{\hat{h}}}_1\le h_0\) such that if \(|w|\le \delta _0\) and \(0<h\le {{\hat{h}}}_1\), then

$$\begin{aligned} |\chi (w)|^{2N_p} \le (1+\epsilon )e^{-2\sigma _\mu \beta }. \end{aligned}$$
(7.2)

Next, we will prove that (7.2) still holds for \(|w|>\delta _0\) and for sufficiently small h. To this end, we write \(w=h\mu _{h,\ell }\sigma _0=re^{i\theta }\), where \(r=|w|\) and \(\theta =\arg (w)\) with \(0<\theta <\pi \). Let \({{\widetilde{\chi }}}_\theta (r)=\chi (w)\) as a function of r. Noting that \(|{{\widetilde{\chi }}}_\theta (r)|^2=1-2r\sin (\theta )+O(r^2)\) resulting from the asymptotic behavior of \(\chi \) in (4.42), it is revealed that \(|{{\widetilde{\chi }}}_\theta (r)|\) is a decreasing function near the origin. By taking into account the fact \(\lim _{r\rightarrow \infty }|{{\widetilde{\chi }}}_\theta (r)|=2-\sqrt{3}<1\), we can choose \(0<\delta _1<\delta _0\) small enough so that

$$\begin{aligned} |{{\widetilde{\chi }}}_\theta (\delta _1)|=\max _{r\ge \delta _1}|{{\widetilde{\chi }}}_\theta (r)|. \end{aligned}$$
(7.3)

Let \(h_1\le {{\hat{h}}}_{1}\) be a positive constant such that \(\mu _{\min }h_1|\sigma _0|<\delta _1\). Now, it suffices to prove (7.2) for \(h\le h_1\) and \(|w|\ge \delta _1\). For \(|w|\ge \delta _1\), let \({{\hat{w}}}=\delta _1w/|w|\), which can be written as \({{\hat{w}}}=h{{\hat{\mu }}}_{h,\ell }\sigma _0\) with \({\hat{\mu }}_{h,\ell }=\mu _{h,\ell }\delta _1/|w|\). Then \({\hat{\mu }}_{h,\ell }\) satisfies \(\mu _{\min }< |{\hat{\mu }}_{h,\ell }|\) as

$$\begin{aligned} \mu _{\min }h\le \mu _{\min } h_1 < \frac{\delta _1}{|\sigma _0|} = \frac{|{{\hat{w}}}|}{|\sigma _0|} = |{{\hat{\mu }}}_{h,\ell }|h. \end{aligned}$$
(7.4)

Since \(|{{\hat{w}}}|=\delta _1\le |w|\), (7.3) gives \(|\chi (w)|\le |\chi ({{\hat{w}}})|\), which in turn together with (7.2) and the fact that \(|{{\hat{w}}}|<\delta _0\) and \(|{{\hat{\mu }}}_{h,\ell }| >\mu _{\mathrm{{min}}}-\epsilon _h\) obtained from (7.4) shows that

$$\begin{aligned} |\chi (w)|^{2N_p} \le |\chi ({{\hat{w}}})|^{2N_p} \le (1+\epsilon )e^{-2\sigma _\mu \beta }, \end{aligned}$$

and the proof is completed. \(\square \)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kim, S., Zhang, H. Convergence Analysis of the Continuous and Discrete Non-overlapping Double Sweep Domain Decomposition Method Based on PMLs for the Helmholtz Equation. J Sci Comput 89, 37 (2021). https://doi.org/10.1007/s10915-021-01640-7

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10915-021-01640-7

Keywords

Mathematics Subject Classification