Skip to main content
Log in

Efficient Structure Preserving Schemes for the Klein–Gordon–Schrödinger Equations

  • Published:
Journal of Scientific Computing Aims and scope Submit manuscript

Abstract

We construct three efficient and accurate numerical methods for solving the Klein–Gordon–Schrödinger (KGS) equations with/without damping terms. The first one is based on the original SAV approach, it preserves a modified Hamiltonian but does not preserve the wave energy. The second one is based on the Lagrange multiplier SAV approach, it preserves both the original Hamiltonian and wave energy, but requires solving a nonlinear algebraic system which may require smaller time steps to have real solutions. The third one is also based on the Lagrange multiplier approach and preserves the Hamiltonian and wave energy in a slightly different form, but it leads to a nonlinear quadratic system for the Lagrange multiplier which can always be explicitly solved. We present ample numerical tests to validate the three schemes, and provide a comparison on the efficiency and accuracy of the three schemes for the KGS equations.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

Data Availibility Statement

Data sharing not applicable to this article as no datasets were generated or analyzed during the current study.

References

  1. Antoine, X., Shen, J., Tang, Q.: Scalar Auxiliary Variable/Lagrange multiplier based pseudospectral schemes for the dynamics of nonlinear Schrödinger/Gross–Pitaevskii equations. J. Comput. Phys. 437, 110328 (2021)

    Article  Google Scholar 

  2. Bao, W., Chunmei, S.: Uniform error estimates of a finite difference method for the Klein–Gordon–Schrödinger system in the nonrelativistic and massless limit regimes. Kinetic Related Models 11(4), 1037–1062 (2018)

    Article  MathSciNet  Google Scholar 

  3. Bao, W., Yang, L.: Efficient and accurate numerical methods for the Klein–Gordon–Schrödinger equations. J. Comput. Phys. 225(2), 1863–1893 (2007)

    Article  MathSciNet  Google Scholar 

  4. Bao, W., Zhao, X.: A uniformly accurate (UA) multiscale time integrator Fourier pseudospectral method for the Klein–Gordon–Schrödinger equations in the nonrelativistic limit regime. Numer. Math. 135(3), 833–873 (2017)

    Article  MathSciNet  Google Scholar 

  5. Biler, P.: Attractors for the system of Schrödinger and Klein–Gordon equations with Yukawa coupling. SIAM J. Math. Anal. 21(5), 1190–1212 (1990)

    Article  MathSciNet  Google Scholar 

  6. Boling, G., Yongsheng, L.: Attractor for dissipative Klein–Gordon–Schrödinger equations in R3. J. Differ. Equ. 136(2), 356–377 (1997)

    Article  Google Scholar 

  7. Castillo, P., Gómez, S.: Conservative local discontinuous Galerkin method for the fractional Klein–Gordon–Schrödinger system with generalized Yukawa interaction. Numer. Algorithms 84(1), 407–425 (2020)

    Article  MathSciNet  Google Scholar 

  8. Chen, J., Chen, F.: Convergence of a high-order compact finite difference scheme for the Klein–Gordon–Schrödinger equations. Appl. Numer. Math. 143, 133–145 (2019)

    Article  MathSciNet  Google Scholar 

  9. Cheng, Q., Liu, C., Shen, J.: A new Lagrange multiplier approach for gradient flows. Comput. Methods Appl. Mech. Eng. 367, 113070 (2020)

    Article  MathSciNet  Google Scholar 

  10. Cheng, Q., Shen, J.: Global constraints preserving scalar auxiliary variable schemes for gradient flows. SIAM J. Sci. Comput. 42(4), A2489–A2513 (2020)

    Article  MathSciNet  Google Scholar 

  11. Feng, X., Li, B., Ma, S.: High-order mass-and energy-conserving SAV-Gauss collocation finite element methods for the nonlinear Schrödinger equation. SIAM J. Numer. Anal. 59(3), 1566–1591 (2021)

    Article  MathSciNet  Google Scholar 

  12. Fu, Y., Hu, D., Wang, Y.: High-order structure-preserving algorithms for the multi-dimensional fractional nonlinear Schrödinger equation based on the SAV approach. Math. Comput. Simul. 185, 238–255 (2021)

    Article  Google Scholar 

  13. Fukuda, I., Tsutsumi, M.: On coupled Klein–Gordon–Schrödinger equations. I. Bulletin of Science and Engineering Research Laboratory. Waseda University, 69:51–62 (1975)

  14. Fukuda, I., Tsutsumi, M.: On the Yukawa-coupled Klein–Gordon–Schrödinger equations in three space dimensions. Proc. Jpn. Acad. 51(6), 402–405 (1975)

    MATH  Google Scholar 

  15. Fukuda, I., Tsutsumi, M.: On coupled Klein–Gordon–Schrödinger equations II. J. Math. Anal. Appl. 66(2), 358–378 (1978)

    Article  MathSciNet  Google Scholar 

  16. Fukuda, I., Tsutsumi, M.: On coupled Klein–Gordon–Schrödinger equations. III. Higher order interaction, decay and blow-up. Math. Japonica, 24(3), 307–321 (1979/80)

  17. Guo, B.: Global solution for some problem of a class of equations in interaction of complex Schrödinger field and real Klein–Gordon field. Sci. China Ser. A Math. 25, 97–107 (1982)

    Google Scholar 

  18. Guo, B., Miao, C.: Asymptotic behavior of coupled Klein–Gordon–Schrödinger equations. Sci. China Ser. A Math. 25(7), 705–714 (1995)

    Google Scholar 

  19. Hayashi, N., von Wahl, W.: On the global strong solutions of coupled Klein–Gordon–Schrödinger equations. J. Math. Soc. Jpn. 39(3), 489–497 (1987)

    Article  Google Scholar 

  20. Hong, J., Jiang, S., Kong, L., Li, C.: Numerical comparison of five difference schemes for coupled Klein–Gordon–Schrödinger equations in quantum physics. J. Phys. A: Math. Theor. 40(30), 9125–9135 (2007)

    Article  Google Scholar 

  21. Hong, J., Jiang, S., Li, C.: Explicit multi-symplectic methods for Klein–Gordon–Schrödinger equations. J. Comput. Phys. 228(9), 3517–3532 (2009)

    Article  MathSciNet  Google Scholar 

  22. Ji, B., Zhang, L.: A dissipative finite difference Fourier pseudo-spectral method for the Klein–Gordon–Schrödinger equations with damping mechanism. Appl. Math. Comput. 376(125148), 125148 (2020)

  23. Kong, L., Chen, M., Yin, X.: A novel kind of efficient symplectic scheme for Klein–Gordon–Schrödinger equation. Appl. Numer. Math. 135, 481–496 (2019)

    Article  MathSciNet  Google Scholar 

  24. Kong, L., Zhang, J., Cao, Y., Duan, Y., Huang, H.: Semi-explicit symplectic partitioned Runge–Kutta Fourier pseudo-spectral scheme for Klein–Gordon–Schrödinger equations. Comput. Phys. Commun. 181(8), 1369–1377 (2010)

    Article  Google Scholar 

  25. Li, M., Shi, D., Wang, J., Ming, W.: Unconditional superconvergence analysis of the conservative linearized Galerkin FEMs for nonlinear Klein–Gordon–Schrödinger equation. Appl. Numer. Math. 142, 47–63 (2019)

    Article  MathSciNet  Google Scholar 

  26. Liang, H.: Linearly implicit conservative schemes for long-term numerical simulation of Klein–Gordon–Schrödinger equations. Appl. Math. Comput. 238, 475–484 (2014)

    MathSciNet  MATH  Google Scholar 

  27. Lu, K., Wang, B.: Global attractors for the Klein–Gordon–Schrödinger equation in unbounded domains. J. Differ. Equ. 170(2), 281–316 (2001)

    Article  Google Scholar 

  28. Makhankov, V.G.: Dynamics of classical solitons (in non-integrable systems). Phys. Rep. 35(1), 1–128 (1978)

    Article  MathSciNet  Google Scholar 

  29. Poulain, A., Schratz, K.: Convergence, error analysis and longtime behavior of the Scalar Auxiliary Variable method for the nonlinear Schrödinger equation. arXiv preprint arXiv:2012.13943 (2020)

  30. Ray, S.S.: An application of the modified decomposition method for the solution of the coupled Klein–Gordon–Schrödinger equation. Commun. Nonlinear Sci. Numer. Simul. 13(7), 1311–1317 (2008)

  31. Shen, J., Jie, X., Yang, J.: The scalar auxiliary variable (SAV) approach for gradient flows. J. Comput. Phys. 353, 407–416 (2018)

    Article  MathSciNet  Google Scholar 

  32. Shen, J., Zheng, N.: Efficient and accurate sav schemes for the generalized Zakharov systems. Discrete Contin Dyn Syst-B 26(1), 645 (2021)

    MathSciNet  MATH  Google Scholar 

  33. Wang, B., Lange, H.: Attractors for the Klein–Gordon–Schrödinger equation. J. Math. Phys. 40(5), 2445–2457 (1999)

    Article  MathSciNet  Google Scholar 

  34. Wang, J., Liang, D., Wang, Y.: Analysis of a conservative high-order compact finite difference scheme for the Klein–Gordon–Schrödinger equation. J. Comput. Appl. Math. 358, 84–96 (2019)

    Article  MathSciNet  Google Scholar 

  35. Wang, J., Xiao, A.: An efficient conservative difference scheme for fractional Klein–Gordon–Schrödinger equations. Appl. Math. Comput. 320, 691–709 (2018)

    MathSciNet  MATH  Google Scholar 

  36. Xiang, X.: Spectral method for solving the system of equations of Schrödinger–Klein–Gordon field. J. Comput. Appl. Math. 21, 161–171 (1988)

    Article  MathSciNet  Google Scholar 

  37. Yang, H.: Error estimates for a class of energy- and Hamiltonian-preserving local discontinuous Galerkin methods for the Klein–Gordon–Schrödinger equations. J. Appl. Math. Comput. 62(1–2), 377–424 (2020)

    Article  MathSciNet  Google Scholar 

  38. Zhang, L.: Convergence of a conservative difference scheme for a class of Klein–Gordon–Schrödinger equations in one space dimension. Appl. Math. Comput. 163(1), 343–355 (2005)

    MathSciNet  MATH  Google Scholar 

Download references

Acknowledgements

This work is supported in part by NSFC 11971407, NSF DMS-2012585 and AFOSR FA9550-20-1-0309.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jie Shen.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendix A: \(F_1\) and \(F_2\) in (3.23)

Appendix A: \(F_1\) and \(F_2\) in (3.23)

The exact forms of nonlinear functions \(F_1\) and \(F_2\) in (3.23) are

$$\begin{aligned} F_{1}\left( \eta ^{n+1}, \lambda ^{n+1}\right)= & {} \left( \eta ^{n+1}\right) ^{3}\left( \left( p_{2}^{n+1}\right) ^{2}+\left( q_{2}^{n+1}\right) ^{2}, \phi _{2}^{n+1}\right) + \left( \lambda ^{n+1}\right) ^{3}\left( \left( p_{3}^{n+1}\right) ^{2}+\left( q_{3}^{n+1}\right) ^{2}, \phi _{3}^{n+1}\right) \\&\quad +\lambda ^{n+1}\left( \eta ^{n+1}\right) ^{2}\left\{ 2\left( p_{2}^{n+1}p_{3}^{n+1}+q_{2}^{n+1}q_{3}^{n+1}, \phi _{2}^{n+1}\right) + \left( \left( p_{2}^{n+1}\right) ^{2}+\left( q_{2}^{n+1}\right) ^{2}, \phi _{3}^{n+1}\right) \right\} \\&\quad + \left( \lambda ^{n+1}\right) ^{2}\eta ^{n+1}\left\{ 2\left( p_{2}^{n+1}p_{3}^{n+1}+q_{2}^{n+1}q_{3}^{n+1}, \phi _{3}^{n+1}\right) + \left( \left( p_{3}^{n+1}\right) ^{2}+\left( q_{3}^{n+1}\right) ^{2}, \phi _{2}^{n+1}\right) \right\} \\&\quad + \left( \eta ^{n+1}\right) ^{2}\left\{ 2\left( p_{1}^{n+1}p_{2}^{n+1}+q_{1}^{n+1}q_{2}^{n+1}, \phi _{2}^{n+1}\right) + \left( \left( p_{2}^{n+1}\right) ^{2}+\left( q_{2}^{n+1}\right) ^{2}, \phi _{1}^{n+1}\right) \right. \\&\quad \left. - \frac{1}{2}\left[ 2\left( p^{n}p_{2}^{n+1}+q^{n}q_2^{n+1}, \phi ^{n}\right) + \left( \left( p^{n}\right) ^{2}+\left( q^{n}\right) ^{2},\phi _{2}^{n+1}\right) \right] \right\} \\&\quad + \left( \lambda ^{n+1}\right) ^{2}\left\{ 2\left( p_{1}^{n+1}p_{3}^{n+1}+q_{1}^{n+1}q_{3}^{n+1}, \phi _{3}^{n+1}\right) + \left( \left( p_{3}^{n+1}\right) ^{2}+\left( q_{3}^{n+1}\right) ^{2}, \phi _{1}^{n+1}\right) \right. \\&\quad \left. -\left[ \left( p^{n}, p_{3}^{n+1}\right) +\left( q^{n}, q_{3}^{n+1}\right) \right] \right\} \\&\quad + \lambda ^{n+1}\eta ^{n+1}\left\{ 2\left( p_{2}^{n+1}p_{3}^{n+1}+q_{2}^{n+1}q_{3}^{n+1}, \phi _{1}^{n+1}\right) + 2\left( p_{1}^{n+1}p_{3}^{n+1}+q_{1}^{n+1}q_{3}^{n+1}, \phi _{2}^{n+1}\right) \right. \\&\quad \left. + 2\left( p_{1}^{n+1}p_{2}^{n+1}+q_{1}^{n+1}q_{2}^{n+1}, \phi _{3}^{n+1}\right) - \frac{1}{2}\left[ 2\left( p^{n}p_{3}^{n+1}+q^{n}q_{3}^{n+1}, \phi ^{n}\right) + \left( \left( p^{n}\right) ^{2}+\left( q^{n}\right) ^{2}, \phi _{3}^{n+1}\right) \right. \right. \\&\quad \left. \left. + 2\left( p^{n}, p_{2}^{n+1}\right) +2\left( q^{n}, q_{2}^{n+1}\right) \right] \right\} \\&\quad + \eta ^{n+1}\left\{ 2\left( p_{1}^{n+1}p_{2}^{n+1}+q_{1}^{n+1}q_{2}^{n+1}, \phi _{1}^{n+1}\right) + \left( \left( p_{1}^{n+1}\right) ^{2}+\left( q_{1}^{n+1}\right) ^{2}, \phi _{2}^{n+1}\right) \right. \\&\quad \left. -\frac{1}{2}\left[ 2\left( p^{n}\phi ^{n}, p_{1}^{n+1}-p^{n-1}\right) \right. \right. \\&\quad \left. \left. + 2 \left( q^{n}\phi ^{n}, q_{1}^{n+1}-q^{n-1}\right) + \left( \left( p^{n}\right) ^{2}+\left( q^{n}\right) ^{2}, \phi _{1}^{n+1}-\phi ^{n-1}\right) \right. \right. \\&\quad \left. \left. + 2\eta ^{n-1}\left( p^{n}p_{2}^{n+1}+q^{n}q_{2}^{n+1}, \phi ^{n}\right) + \eta ^{n-1}\left( \left( p^{n}\right) ^{2}+ \left( q^{n}\right) ^{2}, \phi _{2}^{n+1}\right) \right. \right. \\&\quad \left. \left. + 2\lambda ^{n-1}\left( \left( p^{n}, p_{2}^{n+1}\right) + \left( q^{n}, q_{2}^{n+1}\right) \right) \right] \right\} \\&\quad + \lambda ^{n+1}\left\{ 2\left( p_{1}^{n+1}p_{3}^{n+1}+q_{1}^{n+1}q_{3}^{n+1}, \phi _{1}^{n+1}\right) + \left( \left( p_{1}^{n+1}\right) ^{2}+\left( q_{1}^{n+1}\right) ^{2}, \phi _{3}^{n+1}\right) \right. \\&\quad \left. - \frac{1}{2}\left[ 2\left( p^{n}, p_{1}^{n+1}-p^{n-1}\right) + 2 \left( q^{n}, q_{1}^{n+1}-q^{n-1}\right) + 2\eta ^{n-1}\left( p^{n}p_{3}^{n+1}+q^{n}q_{3}^{n+1}, \phi ^{n}\right) \right. \right. \\&\quad \left. \left. + \eta ^{n-1}\left( \left( p^{n}\right) ^{2}+ \left( q^{n}\right) ^{2}, \phi _{3}^{n+1}\right) + 2\lambda ^{n-1}\left( \left( p^{n}, p_{3}^{n+1}\right) + \left( q^{n}, q_{3}^{n+1}\right) \right) \right] \right\} \\&\quad + \left( \left( p_{1}^{n+1}\right) ^{2}+\left( q_{1}^{n+1}\right) ^{2}, \phi _{1}^{n+1}\right) - \left( \left( p^{n-1}\right) ^{2}+\left( q^{n-1}\right) ^{2}, \phi ^{n-1}\right) - \left[ \eta ^{n-1}\left( p^{n}\phi ^{n}, p_{1}^{n+1}-p^{n-1}\right) \right. \\&\quad \left. + \left( q^{n}\phi ^{n}, q_{1}^{n+1}-q^{n-1}\right) +\frac{\eta ^{n-1}}{2}\left( \left( p^{n}\right) ^{2}+\left( q^{n}\right) ^{2}, \phi _{1}^{n+1}-\phi ^{n-1}\right) \right. \\&\quad \left. +\lambda ^{n-1}\left( \left( p^{n}, p_{1}^{n+1}-p^{n-1}\right) + \left( q^{n}, q_{1}^{n+1}-q^{n-1}\right) \right) \right] , \end{aligned}$$

and

$$\begin{aligned} \begin{aligned} F_{2}\left( \eta ^{n+1}, \lambda ^{n+1}\right)&= \left( \eta ^{n+1}\right) ^{2}\left( \left( p_{2}^{n+1}\right) ^{2}+\left( q_{2}^{n+1}\right) ^{2}, 1\right) + \left( \lambda ^{n+1}\right) ^{2}\left( \left( p_{3}^{n+1}\right) ^{2}+\left( q_{3}^{n+1}\right) ^{2}, 1\right) \\&\quad \!+\! 2\eta ^{n+1}\left[ (p_{1}^{n+1}, p_{2}^{n+1}) \!+\! (q_{1}^{n+1}, q_{2}^{n+1})\right] \!+\! 2\lambda ^{n+1} \left[ (p_{1}^{n+1}, p_{3}^{n+1}) \!+\! (q_{1}^{n+1}, q_{3}^{n+1})\right] \!+\! 2\lambda ^{n+1}\eta ^{n+1}\\&\quad \left[ \left( p_{2}^{n+1}, p_{3}^{n+1}\right) + \left( q_{2}^{n+1}, q_{3}^{n+1}\right) \right] + \left( \left( p_{1}^{n+1}\right) ^{2}+ \left( q_{1}^{n+1}\right) ^{2}, 1\right) - \left( \left( p^{0}\right) ^{2}+ \left( q^{0}\right) ^{2}, 1\right) . \end{aligned} \end{aligned}$$

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, Y., Shen, J. Efficient Structure Preserving Schemes for the Klein–Gordon–Schrödinger Equations. J Sci Comput 89, 47 (2021). https://doi.org/10.1007/s10915-021-01649-y

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10915-021-01649-y

Keywords

Mathematics Subject Classification

Navigation