Skip to main content
Log in

High Order Finite Difference Alternative WENO Scheme for Multi-component Flows

  • Published:
Journal of Scientific Computing Aims and scope Submit manuscript

Abstract

A fifth order finite difference alternative weighted essentially non-oscillatory scheme is studied for a five-equation model, which plays an important role in the modelling of compressible multi-component flows. In our algorithm, the primitive variables are used in the weighted essentially non-oscillatory interpolation, from which it can be proved that the equilibriums of the velocity and pressure are preserved respectively throughout the whole computation of contact moving interface problems, under the ideal and stiffened gases equations of state. In addition, it is found that with the interpolation being performed on the characteristic variables which are the projections of the primitive variables, non-physical oscillations appearing around the contact waves can be significantly restrained. Numerical examples verify the theory and illustrate the robustness of the proposed scheme.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  1. Abgrall, R.: How to prevent pressure oscillations in multicomponent flow calculations: a quasi conservative approach. J. Comput. Phys. 125, 150–160 (1996)

    Article  MathSciNet  Google Scholar 

  2. Allaire, G., Clerc, S., Kokh, S.: A five-equation model for the simulation of interfaces between compressible fluids. J. Comput. Phys. 181, 577–616 (2002)

    Article  MathSciNet  Google Scholar 

  3. Borges, R., Carmona, M., Costa, B., Don, W.S.: An improved weighted essentially non-oscillatory scheme for hyperbolic conservation laws. J. Comput. Phys. 227, 3191–3211 (2008)

    Article  MathSciNet  Google Scholar 

  4. Chen, G., Tang, H., Zhang, P.: Second-order accurate Godunov scheme for multicomponent flows on moving triangular meshes. J. Sci. Comput. 34, 64–86 (2008)

    Article  MathSciNet  Google Scholar 

  5. Cheng, J., Zhang, F., Liu, T.: A quasi-conservative discontinuous Galerkin method for solving five equation model of compressible two-medium flows. J. Sci. Comput. 85, 66 (2020)

    Article  MathSciNet  Google Scholar 

  6. Coralic, V., Colonius, T.: Finite-volume WENO scheme for viscous compressible multicomponent flows. J. Comput. Phys. 274, 95–121 (2014)

    Article  MathSciNet  Google Scholar 

  7. Deng, X., Inaba, S., Xie, B., Shyue, K.-M., Xiao, F.: High fidelity discontinuity-resolving reconstruction for compressible multiphase flows with moving interfaces. J. Comput. Phys. 371, 945–966 (2018)

    Article  MathSciNet  Google Scholar 

  8. Don, W.S., Borges, R.: Accuracy of the weighted essentially non-oscillatory conservative finite difference schemes. J. Comput. Phys. 250, 347–372 (2013)

    Article  MathSciNet  Google Scholar 

  9. Don, W.S., Li, D., Gao, Z., Wang, B.: A characteristic-wise alternative WENO-Z finite difference scheme for solving the compressible multicomponent non-reactive flows in the overestimated quasi-conservative form. J. Sci. Comput. 82, 66 (2020)

    Article  MathSciNet  Google Scholar 

  10. He, Z., Li, L., Zhang, Y., Tian, B.: Consistent implementation of characteristic flux-split based finite difference method for compressible multi-material gas flows. Comput. Fluids 168, 190–200 (2018)

    Article  MathSciNet  Google Scholar 

  11. He, Z., Zhang, Y., Li, X., Li, L., Tian, B.: Preventing numerical oscillations in the flux-split based finite difference method for compressible flows with discontinuities. J. Comput. Phys. 300, 269–287 (2015)

    Article  MathSciNet  Google Scholar 

  12. Jiang, G.-S., Shu, C.-W.: Efficient implementation of weighted ENO schemes. J. Comput. Phys. 126, 202–228 (1996)

    Article  MathSciNet  Google Scholar 

  13. Jiang, Y., Shu, C.-W., Zhang, M.: An alternative formulation of finite difference weighted ENO schemes with Lax–Wendroff time discretization for conservation laws. SIAM J. Sci. Comput. 35, A1137–A1160 (2013)

    Article  MathSciNet  Google Scholar 

  14. Johnsen, E., Colonius, T.: Implementation of WENO schemes in compressible multicomponent flow problem. J. Comput. Phys. 219, 715–732 (2006)

    Article  MathSciNet  Google Scholar 

  15. Kim, S.-S., Kim, C., Rho, O.-H., Kyu Hong, S.: Cures for the shock instability: development of a shock-stable Roe scheme. J. Comput. Phys. 185, 342–374 (2003)

    Article  MathSciNet  Google Scholar 

  16. Luo, D., Qiu, J., Zhu, J., Chen, Y.: A Quasi-conservative Discontinuous Galerkin Method for Multi-component Flows Using the Non-oscillatory Kinetic Flux (2020)

  17. Movahed, P., Johnsen, E.: A solution-adaptive method for efficient compressible multifluid simulations, with application to the Richtmyer–Meshkov instability. J. Comput. Phys. 239, 166–186 (2013)

    Article  MathSciNet  Google Scholar 

  18. Nonomura, T., Fujii, K.: Characteristic finite-difference WENO scheme for multicomponent compressible fluid analysis: overestimated quasi-conservative formulation maintaining equilibriums of velocity, pressure, and temperature. J. Comput. Phys. 340, 358–388 (2017)

    Article  MathSciNet  Google Scholar 

  19. Nonomura, T., Morizawa, S., Terashima, H., Obayashi, S., Fujii, K.: Numerical (error) issues on compressible multicomponent flows using a high-order differencing scheme: weighted compact nonlinear scheme. J. Comput. Phys. 231, 3181–3210 (2012)

    Article  MathSciNet  Google Scholar 

  20. Qiu, J., Shu, C.-W.: On the construction, comparison, and local characteristic decomposition for high-order central WENO schemes. J. Comput. Phys. 183, 187–209 (2002)

    Article  MathSciNet  Google Scholar 

  21. Saurel, R., Pantano, C.: Diffuse-interface capturing methods for compressible two-phase flows. Annu. Rev. Fluid Mech. 50, 105–130 (2018)

    Article  MathSciNet  Google Scholar 

  22. Shu, C.-W., Osher, S.: Efficient implementation of essentially non-oscillatory shock-capturing schemes. J. Comput. Phys. 77, 439–471 (1988)

    Article  MathSciNet  Google Scholar 

  23. Shukla, R.K., Pantano, C., Freund, J.B.: An interface capturing method for the simulation of multi-phase compressible flows. J. Comput. Phys. 229, 7411–7439 (2010)

    Article  MathSciNet  Google Scholar 

  24. Shyue, K.-M.: An efficient shock-capturing algorithm for compressible multicomponent problems. J. Comput. Phys. 142, 208–242 (1998)

    Article  MathSciNet  Google Scholar 

  25. Tian, B., Li, L.: A five-equation model based global ale method for compressible multifluid and multiphase flows. Comput. Fluids 214, 104756 (2021)

    Article  MathSciNet  Google Scholar 

  26. Wang, B.-S., Li, P., Gao, Z., Don, W.S.: An improved fifth order alternative WENO-Z finite difference scheme for hyperbolic conservation laws. J. Comput. Phys. 374, 469–477 (2018)

    Article  MathSciNet  Google Scholar 

  27. Wang, C., Shu, C.-W.: An interface treating technique for compressible multi-medium flow with Runge–Kutta discontinuous Galerkin method. J. Comput. Phys. 229, 8823–8843 (2010)

    Article  MathSciNet  Google Scholar 

  28. Zhang, C., Menshov, I.: Using the composite Riemann problem solution for capturing interfaces in compressible two-phase flows. Appl. Math. Comput. 363, 124610 (2019)

    MathSciNet  MATH  Google Scholar 

  29. Zhao, X., Yu, X., Qiu, M., Qing, F., Zou, S.: An arbitrary Lagrangian–Eulerian RKDG method for multi-material flows on adaptive unstructured meshes. Comput. Fluids 207, 104589 (2020)

    Article  MathSciNet  Google Scholar 

  30. Zheng, F., Shu, C.-W., Qiu, J.: A high order conservative finite difference scheme for compressible two-medium flows. J. Comput. Phys. 445, 110597 (2021)

    Article  MathSciNet  Google Scholar 

  31. Zhu, J., Qiu, J., Liu, T., Khoo, B.C.: RKDG methods with WENO type limiters and conservative interfacial procedure for one-dimensional compressible multi-medium flow simulations. Appl. Numer. Math. 61, 554–580 (2011)

    Article  MathSciNet  Google Scholar 

Download references

Acknowledgements

The research of Yaguang Gu and Zhen Gao was partially supported by the NNSFC (11871443) and Shandong Provincial Qingchuang Science and Technology Project (2019KJI002). The research of Guanghui Hu was partially supported by NNSFC (11922120) and Multi-Year Research Grant (2019-00154-FST) of University of Macau. The research of Peng Li was partially supported by the NNSFC (11801383) and Hebei Provincial NSF (A2020210047). The research of Lifeng Wang was partially supported by the NNSFC (11975053). The author Yaguang Gu would also like to thank Dr. Dongmi Luo for helpful discussions.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zhen Gao.

Ethics declarations

Conflict of interest

All authors declare that they have no conflict of interest.

Code Availability

The custom codes generated during the current study are available from the corresponding author on reasonable request.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gu, Y., Gao, Z., Hu, G. et al. High Order Finite Difference Alternative WENO Scheme for Multi-component Flows. J Sci Comput 89, 52 (2021). https://doi.org/10.1007/s10915-021-01659-w

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10915-021-01659-w

Keywords

Navigation