Skip to main content
Log in

Convergence of Relaxed Inertial Subgradient Extragradient Methods for Quasimonotone Variational Inequality Problems

  • Published:
Journal of Scientific Computing Aims and scope Submit manuscript

Abstract

In this paper, we present two new relaxed inertial subgradient extragradient methods for solving variational inequality problems in a real Hilbert space. We establish the convergence of the sequence generated by these methods when the cost operator is quasimonotone and Lipschitz continuous, and when it is Lipschitz continuous without any form of monotonicity. The methods combine both the inertial and relaxation techniques in order to achieve high convergence speed, and the techniques used are quite different from the ones in most papers for solving variational inequality problems. Furthermore, we present some experimental results to illustrate the profits gained from the relaxed inertial steps.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Alakoya, T.O., Jolaoso, L.O., Mewomo, O.T.: Modified inertia subgradient extragradient method with self adaptive stepsize for solving monotone variational inequality and fixed point problems. Optimization (2020). https://doi.org/10.1080/02331934.2020.1723586

    Article  MATH  Google Scholar 

  2. Alvarez, F., Attouch, H.: An inertial proximal method for maximal monotone operators via discretization of a nonlinear oscillator with damping. Set-Valued Anal. 9, 3–11 (2001)

    Article  MathSciNet  Google Scholar 

  3. Attouch, H., Cabot, A.: Convergence of a relaxed inertial proximal algorithm for maximally monotone operators. Math. Program. (2019). https://doi.org/10.1007/s10107-019-01412-0

    Article  MATH  Google Scholar 

  4. Attouch, H., Cabot, A.: Convergence of a relaxed inertial forward-backward algorithm for structured monotone inclusions. Appl. Math. Optim. 80(3), 547–598 (2019)

    Article  MathSciNet  Google Scholar 

  5. Apostol, R.Y., Grynenko, A.A., Semenov, V.V.: Iterative algorithms for monotone bilevel variational inequalities. J. Comput. Appl Math. 107, 3–14 (2012)

    Google Scholar 

  6. Beck, A., Teboulle, M.: A fast iterative shrinkage-thresholding algorithm for linear inverse problems. SIAM J. Imaging Sci. 2(1), 183–202 (2009)

    Article  MathSciNet  Google Scholar 

  7. Bot, R.I., Csetnek, E.R., Hendrich, C.: Inertial Douglas–Rachford splitting for monotone inclusion. Appl. Math. Comput. 256, 472–487 (2015)

    MathSciNet  MATH  Google Scholar 

  8. Dong, Q.L., Lu, Y.Y., Yang, J.: The extragradient algorithm with inertial effects for solving the variational inequality. Optimization 65, 2217–2226 (2016)

    Article  MathSciNet  Google Scholar 

  9. Ceng, L.C., Hadjisavvas, N., Wong, N.-C.: Strong convergence theorem by a hybrid extragradient-like approximation method for variational inequalities and fixed point problems. J. Glob. Optim. 46, 635–646 (2010)

    Article  MathSciNet  Google Scholar 

  10. Censor, Y., Gibali, A., Reich, S.: The subgradient extragradient method for solving variational inequalities in Hilbert space. J. Optim. Theory Appl. 148, 318–335 (2011)

    Article  MathSciNet  Google Scholar 

  11. Censor, Y., Gibali, A., Reich, S.: Strong convergence of subgradient extragradient methods for the variational inequality problem in Hilbert space. Optim. Meth Softw. 26, 827–845 (2011)

    Article  MathSciNet  Google Scholar 

  12. Censor, Y., Gibali, A., Reich, S.: Extensions of Korpelevich’s extragradient method for the variational inequality problem in Euclidean space. Optimization 61, 1119–1132 (2011)

  13. Chambolle, A., Dossal, Ch.: On the convergence of the iterates of the fast iterative shrinkage/thresholding algorithm. J. Optim. Theory Appl. 166, 968–982 (2015)

  14. Cholamjiak, W., Cholamjiak, P., Suantai, S.: An inertial forward-backward splitting method for solving inclusion problems in Hilbert spaces. J. Fixed Point Theory Appl. (2018). https://doi.org/10.1007/s11784-018-0526-5

  15. Chuang, C.S.: Hybrid inertial proximal algorithm for the split variational inclusion problem in Hilbert spaces with applications. Optimization 66(5), 777–792 (2017)

    Article  MathSciNet  Google Scholar 

  16. Fichera, G.: Sul pproblem elastostatico di signorini con ambigue condizioni al contorno. Atti Accad. Naz. Lincei Rend. Cl. Sci. Fis. Mat. Natur. 34 (1963), 138-142

  17. Gibali, A., Jolaoso, L.O., Mewomo, O.T., Taiwo, A.: Fast and simple Bregman projection methods for solving variational inequalities and related problems in Banach spaces. Results Math., 75 (2020), Art. No. 179, 36 pp

  18. Godwin, E.C., Izuchukwu, C., Mewomo, O.T.: An inertial extrapolation method for solving generalized split feasibility problems in real Hilbert spaces. Boll. Unione Mat. Ital. (2020). https://doi.org/10.1007/s40574-020-00

    Article  MATH  Google Scholar 

  19. He, B.-S., Yang, Z.-H., Yuan, X.-M.: An approximate proximal-extragradient type method for monotone variational inequalities. J. Math. Anal. Appl. 300, 362–374 (2004)

    Article  MathSciNet  Google Scholar 

  20. Izuchukwu, C., Mebawondu, A.A., Mewomo, O.T.: A new method for solving split variational inequality problems without co-coerciveness. J. Fixed Point Theory Appl.,22 (4), (2020), Art. No. 98, 23 pp

  21. Izuchukwu, C., Ogwo, G.N., Mewomo, O.T.: An inertial method for solving generalized split feasibility problems over the solution set of monotone variational inclusions. Optimization (2020). https://doi.org/10.1080/02331934.2020.1808648

    Article  Google Scholar 

  22. Izuchukwu, C., Okeke, C.C., Mewomo, O.T.: Systems of Variational Inequalities and multiple-set split equality fixed point problems for countable families of multivalued type-one demicontractive-type mappings. Ukraïn. Mat. Zh. 71(11), 1480–1501 (2019)

    Google Scholar 

  23. Iutzeler, F., Hendrickx, J.M.: A generic online acceleration scheme for optimization algorithms via relaxation and inertia. Optim. Methods Softw. 34(2), 383–405 (2019)

    Article  MathSciNet  Google Scholar 

  24. Jolaoso, L.O., Taiwo, A., Alakoya, T.O., Mewomo, O.T.: Strong convergence theorem for solving pseudo-monotone variational inequality problem using projection method in a reflexive Banach space. J. Optim. Theory Appl. 185(3), 744–766 (2020)

    Article  MathSciNet  Google Scholar 

  25. Khan, S.H., Alakoya, T.O., Mewomo, O.T.: Relaxed projection methods with self-adaptive step size for solving variational inequality and fixed point problems for an infinite family of multivalued relatively nonexpansive mappings in Banach Spaces. Math. Comput. Appl.,25 (2020), Art. 54, 25 pp

  26. Khobotov, E.N.: Modification of the extragradient method for solving variational inequalities and certain optimization problems. USSR Comput. Math. Math. Phys. 27, 120–127 (1989)

    Article  Google Scholar 

  27. Kinderlehrer, D., Stampacchia, G.: An introduction to variational inequalities and their applications. Academic Press, New York (1980)

    MATH  Google Scholar 

  28. Korpelevich, G.M.: An extragradient method for finding sadlle points and for other problems. Ekon. Mat. Metody 12, 747–756 (1976)

    MathSciNet  MATH  Google Scholar 

  29. Liu anad, H., Yang, J.: Weak convergence of iterative methods for solving quasimonotone variational inequalities. Comput. Optim. Appl., 77 (2), (2020) 491-508

  30. Kraikaew, R., Saejung, S.: Strong convergence of the Halpern subgradient extragradient method for solving variational inequalities in Hilbert spaces. J. Optim. Theory Appl. 163(2), 399–412 (2014)

    Article  MathSciNet  Google Scholar 

  31. Lorenz, D.A., Pock, T.: An inertial forward-backward algorithm for monotone inclusions. J. Math. Imaging Vis. 51, 311–325 (2015)

    Article  MathSciNet  Google Scholar 

  32. Mainge, P.E.: Convergence theorems for inertial KM-type algorithms. J. Comput. Appl. Math. 219(1), 223–236 (2008)

    Article  MathSciNet  Google Scholar 

  33. Malitsky, Y.: Projected reflected gradient methods for monotone variational inequalities. SIAM J. Optim. 25(1), 502–520 (2015)

    Article  MathSciNet  Google Scholar 

  34. Moudafi, A., Oliny, M.: Convergence of a splitting inertial proximal method for monotone operators. J. Comput. Appl. Math. 155, 447–454 (2003)

    Article  MathSciNet  Google Scholar 

  35. Nesterov, Y.: A method of solving a convex programming problem with convergence rate O(\(1/k^2\)). Soviet Math. Doklady 27, 372–376 (1983)

    MATH  Google Scholar 

  36. Noor, M.: Extragradient Methods for pseudomonotone variational inequalities. J. Optim. Theory Appl. 117, 475–488 (2003)

    Article  MathSciNet  Google Scholar 

  37. Ochs, P., Brox, T., Pock, T.: iPiasco: inertial proximal algorithm for strongly convex optimization. J. Math. Imaging Vis 53, 171–181 (2015)

    Article  MathSciNet  Google Scholar 

  38. Polyak, B.T.: Some methods of speeding up the convergence of iterates methods. U.S.S.R Comput. Math. Phys.,4 (5) (1964), 1-17

  39. Shehu, Y., Li, X.H., Dong, Q.L.: An efficient projection-type method for monotone variational inequalities in Hilbert spaces. Numer. Algorithms 84, 365–388 (2020)

    Article  MathSciNet  Google Scholar 

  40. Shehu, Y., Vuong, P.T., Zemkoho, A.: An inertial extrapolation method for convex simple bilevel optimization. Optim Methods. Softw. (2019). https://doi.org/10.1080/10556788.2019.1619729

    Article  MATH  Google Scholar 

  41. Stampacchia, G.: Variational inequalities. In: Theory and Applications of Monotone Operators,Proceedings of the NATO Advanced Study Institute, Venice, Italy (Edizioni Odersi, Gubbio, Italy, 1968), 102–192

  42. Sun, D.: A new step-size skill for solving a class of nonlinear projection equations. J. Comput. Math. 13, 357–368 (1995)

    MathSciNet  MATH  Google Scholar 

  43. Taiwo, A., Alakoya, T.O., Mewomo, O.T.: Halpern-type iterative process for solving split common fixed point and monotone variational inclusion problem between Banach spaces. Numer. Algorithms (2020). https://doi.org/10.1007/s11075-020-00937-2

    Article  MATH  Google Scholar 

  44. Taiwo, A., Owolabi, A.O.-E., Jolaoso, L.O., Mewomo, O.T., Gibali, A.: A new approximation scheme for solving various split inverse problems. Afr. Mat. (2020). https://doi.org/10.1007/s13370-020-00832-y

    Article  MATH  Google Scholar 

  45. Thong, D.V., Hieu, D.V.: A strong convergence of modified subgradient extragradient method for solving bilevel pseudomonotone variational inequality problems. Optimization 69, 1313–1334 (2019)

    Article  MathSciNet  Google Scholar 

  46. Thong, D.V., Hieu, D.V.: Inertial subgradient extragradient algorithms with line-search process for solving variational inequality problems and fixed point problems. Numer. Algorithms 80, 1283–1307 (2019)

    Article  MathSciNet  Google Scholar 

  47. Thong, D.V., Hieu, D.V.: An inertial method for solving split common fixed point problems. J. Fixed Point Theory Appl. 19(4), 3029–3051 (2017)

    Article  MathSciNet  Google Scholar 

  48. Vuong, P.T.: On the weak convergence of the extragradient method for solving pseudomonotone variational inequalities. J. Optim. Theory Appl. 176, 399–409 (2018)

    Article  MathSciNet  Google Scholar 

  49. Xia, Y., Wang, J.: A general methodology for designing globally convergent optimization neural networks. IEEE Trans. Neural Netw. 9(6), 1331–1343 (1998)

    Article  Google Scholar 

  50. Ye, M., He, Y.: A double projection method for solving variational inequalities without monotonicity. Comput. Optim. Appl. 60(1), 141–150 (2015)

    Article  MathSciNet  Google Scholar 

  51. Yang, J.: Self-adaptive inertial subgradient extragradient algorithm for solving pseudomonotone variational inequalities. Appl. Anal. (2019). https://doi.org/10.1080/00036811.2019.1634257

    Article  Google Scholar 

  52. Yang, J., Liu, H., Zexian, L.: Modified subgradient extragradient algorithms for solving monotone variational inequalities. Optimization 67, 2247–2258 (2018)

    Article  MathSciNet  Google Scholar 

Download references

Acknowledgements

The authors are grateful to the anonymous referees and the handling Editor for their insightful comments which have improved the earlier version of the manuscript greatly. The first author acknowledges with thanks the scholarship and financial support from the University of KwaZulu-Natal (UKZN) Doctoral Scholarship. The research of the second author is wholly supported by the National Research Foundation (NRF) South Africa (S& F-DSI/NRF Free Standing Postdoctoral Fellowship; Grant Number: 120784). The second author also acknowledges the financial support from DSI/NRF, South Africa Center of Excellence in Mathematical and Statistical Sciences (CoE-MaSS) Postdoctoral Fellowship. The fourth author is supported by the National Research Foundation (NRF) of South Africa Incentive Funding for Rated Researchers (Grant Number 119903). Opinions expressed and conclusions arrived are those of the authors and are not necessarily to be attributed to the CoE-MaSS and NRF. This paper is dedicated to the loving memory of late Professor Charles Ejike Chidume (1947–2021).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Y. Shehu.

Ethics declarations

Declaration

The authors declare that they have no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ogwo, G.N., Izuchukwu, C., Shehu, Y. et al. Convergence of Relaxed Inertial Subgradient Extragradient Methods for Quasimonotone Variational Inequality Problems. J Sci Comput 90, 10 (2022). https://doi.org/10.1007/s10915-021-01670-1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10915-021-01670-1

Keywords

Mathematics Subject Classification