Skip to main content
Log in

The Nonconvex Tensor Robust Principal Component Analysis Approximation Model via the Weighted \(\ell _p\)-Norm Regularization

  • Published:
Journal of Scientific Computing Aims and scope Submit manuscript

Abstract

Tensor robust principal component analysis (TRPCA), which aims to recover the underlying low-rank multidimensional datasets from observations corrupted by noise and/or outliers, has been widely applied to various fields. The typical convex relaxation of TRPCA in literature is to minimize a weighted combination of the tensor nuclear norm (TNN) and the \(\ell _1\)-norm. However, owing to the gap between the tensor rank function and its lower convex envelop (i.e., TNN), the tensor rank approximation by using the TNN appears to be insufficient. Also, the \(\ell _1\)-norm generally is too relaxing as an estimator for the \(\ell _0\)-norm to obtain desirable results in terms of sparsity. Different from current approaches in literature, in this paper, we develop a new non-convex TRPCA model, which minimizes a weighted combination of non-convex tensor rank approximation function and the weighted \(\ell _p\)-norm to attain a tighter approximation. The resultant non-convex optimization model can be solved efficiently by the alternating direction method of multipliers (ADMM). We prove that the constructed iterative sequence generated by the proposed algorithm converges to a critical point of the proposed model. Numerical experiments for both image recovery and surveillance video background modeling demonstrate the effectiveness of the proposed method.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

Data Availability

The authors confirm that the data supporting the findings of this study are available within the article and its supplementary materials.

Notes

  1. https://brainweb.bic.mni.mcgill.ca/.

  2. http://trace.eas.asu.edu/yuv/.

  3. http://jacarini.dinf.usherbrooke.ca/dataset2012/.

References

  1. Bengua, J.A., Phien, H.N., Tuan, H.D., Do, M.N.: Efficient tensor completion for color image and video recovery: low-rank tensor train. IEEE Trans. Image Process. 26(5), 2466–2479 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  2. Cai, S.T., Luo, Q.L., Yang, M., Li, W., Xiao, M.Q.: Tensor robust principal component analysis via nonconvex low rank approximation. Appl. Sci. 9(7), 1411 (2019)

    Article  Google Scholar 

  3. Candès, E.J., Wakin, M.B., Boyd, S.P.: Enhancing sparsity by reweighted \(\ell _1\) minimization. J. Fourier Anal. Appl. 14(5), 877–905 (2007)

    MATH  Google Scholar 

  4. Candès, E.J., Li, X., Ma, Y., Wright, J.: Robust principal component analysis? J. ACM 58(3), 1–37 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  5. Chartrand, R.: Exact reconstructions of sparse signals via nonconvex minimization. IEEE Signal Process. Lett. 14(10), 707–710 (2007)

    Article  Google Scholar 

  6. Chen, J.K.: A new model of tensor robust principal component analysis and its application [D], pp. 1–49. South China Normal University, Guangzhou (2020)

  7. Deisenroth, M.P., Faisal, A.A., Ong, C.S.: Mathematics for Machine Learning. Cambridge University Press, Cambridge (2019)

    MATH  Google Scholar 

  8. De Lathauwer, L., De Moor, B., Vandewalle, J.: A multilinear singular value decomposition. SIAM J. Matrix Anal. Appl. 21(4), 1253–1278 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  9. Donoho, D.L.: De-noising by soft-thresholding. IEEE Trans. Inform. Theory 41(3), 613–627 (1995)

    Article  MathSciNet  MATH  Google Scholar 

  10. Dong, W.S., Shi, G.M., Li, X., Ma, Y., Huang, F.: Compressive sensing via nonlocal low-rank regularization. IEEE Trans. Image Process. 23(8), 3618–3632 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  11. Feng, L.L., Liu, Y.P., Chen, L.X., Zhang, X., Zhu, C.: Robust block tensor principal component analysis. Signal Process. 166, 107271 (2020)

    Article  Google Scholar 

  12. Gao, S.Q., Zhuang, X.H.: Robust approximations of low-rank minimization for tensor completion. Neurocomputing 379, 319–333 (2020)

    Article  Google Scholar 

  13. Georghiades, A.S., Belhumeur, P.N., Kriegman, D.J.: From few to many: illumination cone models for face recognition under variable lighting and pose. IEEE Trans. Pattern Anal. Mach. Intell. 23(6), 643–660 (2002)

    Article  Google Scholar 

  14. Gu, S.H., Xie, Q., Meng, D.Y., Zuo, W.M., Feng, X.C., Zhang, L.: Weighted nuclear norm minimization and its applications to low level vision. Int. J. Comput. Vis. 121(2), 183–208 (2017)

    Article  MATH  Google Scholar 

  15. Hitchcock, F.L.: The expression of a tensor or a polyadic as a sum of products. Stud. Appl. Math. 6(1–4), 164–189 (1927)

    MATH  Google Scholar 

  16. Jiang, T.X., Huang, T.Z., Deng, L.J.: Multi-dimensional imaging data recovery via minimizing the partial sum of tubal nuclear norm. J. Comput. Appl. Math. 372, 112680 (2020)

    Article  MathSciNet  MATH  Google Scholar 

  17. Ji, T.Y., Huang, T.Z., Zhao, X.L., Ma, T.H., Deng, L.J.: A non-convex tensor rank approximation for tensor completion. Appl. Math. Model. 48, 410–422 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  18. Kang, Z., Peng, C., Cheng, Q.: Robust PCA via nonconvex rank approximation. In: IEEE International Conference on Data Mining, pp. 211–220 (2015)

  19. Karlsson, L., Kressner, D., Uschmajew, A.: Parallel algorithms for tensor completion in the CP format. Parallel Comput. 57, 222–234 (2016)

    Article  MathSciNet  Google Scholar 

  20. Kilmer, M.E., Martin, C.D.: Factorization strategies for third-order tensors. Linear Algebra Appl. 435(3), 641–658 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  21. Kilmer, M.E., Braman, K., Hao, N., Hoover, R.C.: Third-order tensors as operators on matrices: a theoretical and computational framework with applications in imaging. SIAM J. Matrix Anal. Appl. 34(1), 148–172 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  22. Kolda, T.G., Bader, B.W.: Tensor decompositions and applications. SIAM Rev. 51(3), 455–500 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  23. Lewis, A.S., Sendov, H.S.: Nonsmooth analysis of singular values. Part I: theory. Set-Valued Anal. 13(3), 213–241 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  24. Liu, G.C., Lin, Z.C., Yan, S.C., Sun, J., Yu, Y., Ma, Y.: Robust recovery of subspace structures by low-rank representation. IEEE Trans. Pattern Anal. Mach. Intell. 35(1), 171–184 (2010)

    Article  Google Scholar 

  25. Liu, J., Musialski, P., Wonka, P., Ye, J.P.: Tensor completion for estimating missing values in visual data. IEEE Trans. Pattern Anal. Mach. Intell. 35(1), 208–220 (2013)

    Article  Google Scholar 

  26. Liu, Y.Y., Zhao, X.L., Zheng, Y.B., Ma, T.H., Zhang, H.Y.: Hyperspectral image restoration by tensor fibered rank constrained optimization and plug-and-play regularization. IEEE Trans. Geosci. Remote Sens. https://doi.org/10.1109/TGRS.2020.3045169 (2021)

  27. Lou, J., Cheung, Y.M.: Robust low-rank tensor minimization via a new tensor spectral k-support norm. IEEE Trans. Image Process. 29, 2314–2327 (2020)

    Article  MathSciNet  Google Scholar 

  28. Li, X.T., Zhao, X.L., Jiang, T.X., Zheng, Y.B., Ji, T.Y., Huang, T.Z.: Low-rank tensor completion via combined non-local self-similarity and low-rank regularization. Neurocomputing 367(20), 1–12 (2019)

    Google Scholar 

  29. Lu, C.Y., Feng, J.S., Chen, Y.D., Liu, W., Lin, Z.C., Yan, S.C.: Tensor robust principal component analysis with a new tensor nuclear norm. IEEE Trans. Pattern Anal. Mach. Intell. 42(4), 925–938 (2020)

    Article  Google Scholar 

  30. Luenberger, D.G., Ye, Y.Y.: Linear and Nonlinear Programming. Springer, Switzerland (2015)

    MATH  Google Scholar 

  31. Lu, H.P., Plataniotis, K.N., Venetsanopoulos, A.N.: MPCA: multilinear principal component analysis of tensor objects. IEEE Trans. Neural Network 19(1), 18–39 (2008)

    Article  Google Scholar 

  32. Lu, Z.S.: Iterative reweighted minimization methods for \(l_p\) regularized unconstrained nonlinear programming. Math. Program. 147(1–2), 277–307 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  33. Martin, D., Fowlkes, C., Tal, D., Malik, J.: A database of human segmented natural images and its application to evaluating segmentation algorithms and measuring ecological statistics. In: Proceedings Eighth IEEE International Conference on Computer Vision, vol. 2, pp. 416–423 (2001)

  34. Mørup, M.: Applications of tensor (multiway array) factorizations and decompositions in data mining. Wiley Interdiscip. Rev. Data Min. Knowl. Discov. 1(1), 24–40 (2011)

    Article  Google Scholar 

  35. Mu, Y., Wang, P., Lu, L.F., Zhang, X.Y., Qi, L.Y.: Weighted tensor nuclear norm minimization for tensor completion using tensor-SVD. Pattern Recogn. Lett. 130, 4–11 (2020)

    Article  Google Scholar 

  36. Oseledets, I.V.: Tensor-train decomposition. SIAM J. Sci. Comput. 33(5), 2295–2317 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  37. Pan, P., Wang, Y.L., Chen, Y.Y., Wang, S.Q., He, G.P.: A new nonconvex rank approximation of RPCA. Sci. Tech. Eng. 17(31), 1671–1815 (2017)

    Google Scholar 

  38. Qi, L.Q., Luo, Z.Y.: Tensor Analysis: Spectral Theory and Special Tensors. SIAM Press, Philadephia (2017)

    Book  MATH  Google Scholar 

  39. Qi, N., Shi, Y.H., Sun, X.Y., Wang, J.D., Yin, B.C., Gao, J.B.: Multi-dimensional sparse models. IEEE Trans. Pattern Recogn. Mach. Intell. 40(1), 163–178 (2018)

    Article  Google Scholar 

  40. Silva, V.D., Lim, L.H.: Tensor rank and the ill-posedness of the best low-rank approximation problem. SIAM J. Matrix Anal. Appl. 30(3), 1084–1127 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  41. Song, G.J., Ng, M.K., Zhang, X.J.: Robust tensor completion using transformed tensor singular value decomposition. Numer. Linear Algeb. Appl. 27(3), e2299 (2020)

    Article  MathSciNet  MATH  Google Scholar 

  42. Xue, J.Z., Zhao, Y.Q., Liao, W.Z., Chan, C.W.: Nonconvex tensor rank minimization and its applications to tensor recovery. Inf. Sci. 503, 109–128 (2019)

    Article  MathSciNet  MATH  Google Scholar 

  43. Xu, W.H., Zhao, X.L., Ji, T.Y., Miao, J.Q., Ma, T.H., Wang, S., Huang, T.Z.: Laplace function based nonconvex surrogate for low-rank tensor completion. Signal Process. Image Commun. 73, 62–69 (2019)

    Article  Google Scholar 

  44. Xu, Z.B., Zhang, H., Wang, Y., Chang, X.Y., Liang, Y.: \(L_{1/2}\) regularization. Sci. China Inf. Sci. 53(6), 1159–1169 (2010)

    Article  MathSciNet  Google Scholar 

  45. Yang, J.H., Zhao, X.L., Ji, T.Y., Ma, T.H., Huang, T.Z.: Low-rank tensor train for tensor robust principal component analysis. Appl. Math. Comput. 367(15), 124783 (2020)

    MathSciNet  MATH  Google Scholar 

  46. Yang, M., Luo, Q.L., Li, W., Xiao, M.Q.: Multiview clustering of images with tensor rank minimization via nonconvex approach. SIAM J. Imaging Sci. 13(4), 2361–2392 (2020)

    Article  MathSciNet  MATH  Google Scholar 

  47. Zhang, Z.M., Aeron, S.: Exact tensor completion using t-SVD. IEEE Trans. Signal Process. 65(6), 1511–1526 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  48. Zhao, X.L., Xu, W.H., Jiang, T.X., Wang, Y., Ng, M.K.: Deep plug-and-play prior for low-rank tensor completion. Neurocomputing 400, 137–149 (2020)

    Article  Google Scholar 

  49. Zhao, X.Y., Bai, M.R., Ng, M.K.: Nonconvex optimization for robust tensor completion from grossly sparse observations. J. Sci. Comput. 85(2), 1–32 (2020)

    Article  MathSciNet  MATH  Google Scholar 

  50. Zhao, Y.B.: Reweighted \(\ell _1\)-minimization for sparse solutions to underdetermined linear systems. SIAM J. Optim. 22(3), 1065–1088 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  51. Zheng, Y.B., Huang, T.Z., Zhao, X.L., Jiang, T.X., Ma, T.H., Ji, T.Y.: Mixed noise removal in hyperspectral image via low-fibered-rank regularization. IEEE Trans. Geosci. Remote Sens. 58(1), 734–749 (2020)

    Article  Google Scholar 

  52. Zheng, Y.B., Huang, T.Z., Zhao, X.L., Zhao, Q.B., Jiang, T.X.: Fully-connected tensor network decomposition and its application to higher-order tensor completion. In: Proceedings of the AAAI Conference on Artificial Intelligence, vol. 35(12), pp. 11071–11078 (2021)

  53. Zhou, M.Y., Liu, Y.P., Long, Z., Chen, L.X., Zhu, C.: Tensor rank learning in CP decomposition via convolutional neural network. Signal Process Image Commun. 73, 12–21 (2019)

    Article  Google Scholar 

  54. Zuo, W.M., Meng, D.Y., Zhang, L., Feng, X.C., Zhang, D.: A generalized iterated shrinkage algorithm for nonconvex sparse coding. In: IEEE International Conference on Computer Vision, pp. 217–224 (2013)

Download references

Acknowledgements

The authors would like to thank three anonymous referees for their very helpful comments and suggestions.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Wen Li.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

This research was supported by the National Natural Science Foundations of China (12071159, 11671158, U1811464) and the NSF-DMS 1854638 of the United States.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, M., Li, W., Chen, Y. et al. The Nonconvex Tensor Robust Principal Component Analysis Approximation Model via the Weighted \(\ell _p\)-Norm Regularization. J Sci Comput 89, 67 (2021). https://doi.org/10.1007/s10915-021-01679-6

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10915-021-01679-6

Keywords

Mathematics Subject Classification

Navigation