Skip to main content
Log in

Fast and Optimal WENO Schemes for Degenerate Parabolic Conservation Laws

  • Published:
Journal of Scientific Computing Aims and scope Submit manuscript

Abstract

In this work, we extend the Fast and Optimized Weighted Essentially Non-Oscillatory (FOWENO) schemes for nonlinear degenerate parabolic equations. Fast WENO methods were introduced with the goal of reducing computational costs for the smoothness indicators calculations. Whereas, Optimal WENO schemes were developed to increase the accuracy of the approximation near critical points. Here, both techniques are adapted for degenerate parabolic conservative laws obtaining: FOWENO34 and FOWENO56 reconstructions, where the first and second digit represent the order of approximation for the convective and diffusive flux, respectively. By considering a SSP Runge-Kutta method for the time discretization, an experimental analysis is carried out in order to show the efficiency and accuracy of FOWENO approximations for one and two-dimensional parabolic problems with degenerate diffusion.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

References

  1. Abedian, R., Adibi, H., Dehghan, M.: A high-order weighted essentially non-oscillatory (weno) finite difference scheme for non linear degenerate parabolic equations. Comput. Phys. Commun. 184, 1874–1888 (2013)

    Article  MathSciNet  Google Scholar 

  2. Acosta, C., Bürger, R.: Difference schemes stabilized by discrete mollification for degenerate parabolic equations in two space dimensions. IMA J. Numer. Anal. 32(4), 1509–1540 (2012)

    Article  MathSciNet  Google Scholar 

  3. Arandiga, F., Baeza, A., Belda, A.M., Mulet, P.: Analysis of weno schemes for full and global accuracy. SIAM J. Numer. Anal. 49, 983–915 (2011)

    Article  MathSciNet  Google Scholar 

  4. Arandiga, F., Martí, M.C., Mulet, P.: Weights design for maximal order weno schemes. J. Sci. Comput. 60, 641–659 (2014)

    Article  MathSciNet  Google Scholar 

  5. Arbogast, T., Huang, C., Zhao, X.: Finite volume weno schemes for non linear parabolic problems with degenerate diffusion on non uniform meshes. J. Comput. Phys. 399, 108921 (2014)

    Article  Google Scholar 

  6. Aronson, D.: The porous medium equation, in Non-linear Diffusion Problems. 1224 (1986)

  7. Baeza, A., Bürger, R., Mulet, P., Zorío, D.: On the efficient computation of smoothness indicators for a class of weno reconstructions. J. Sci. Comput. 80, 1240–1263 (2019)

    Article  MathSciNet  Google Scholar 

  8. Baeza, A., Bürger, R., Mulet, P., Zorío, D.: Weno reconstructions of unconditionally optimal high order. SIAM J. Anal. 57, 2760–2784 (2019)

    Article  MathSciNet  Google Scholar 

  9. Baeza, A., Bürger, R., Mulet, P., Zorío, D.: An efficient third weno scheme with unconditionally optimal accuracy. SIAM J. Sci. Comput. 42, A1028–A1051 (2020)

    Article  MathSciNet  Google Scholar 

  10. Balsara, D., Shu, C.: Monotonicity preserving weighted essentially non oscillatory schemes with increasingly high order of accuracy. J. Comput. Phys. 160, 405–452 (2000)

    Article  MathSciNet  Google Scholar 

  11. Bürger, R., Coronel, A., Sepúlveda, M.: On an upwind difference scheme for strongly degenerate parabolic equations modelling the settling of suspensions in centrifuges and non-cylindrical vessels. Appl. Numer. Math. 56, 1397–1417 (2006)

    Article  MathSciNet  Google Scholar 

  12. Carrillo, H., Páres, C., Zorío, D.: Lax-wendroff approximate taylor methods with fast and optimized weighted essentially non-oscillatory reconstructions. J. Sci. Comput. 86(15), 1573–7691 (2021)

    MathSciNet  MATH  Google Scholar 

  13. Evje, S., Karlsen, K.: On the uniqueness and stability of entropy solutions of nonlinear degenerate parabolic equations with rough coefficients. Discrete Contin. Dyn. Syst. 9, 1081–1104 (2003)

    Article  MathSciNet  Google Scholar 

  14. Evje, S., Karslen, K.: Monotone difference approximations of bv solutions to degenerate convection-diffusion equations. SIAM J. Numer. Anal. 37(6), 1838–1860 (2000)

    Article  MathSciNet  Google Scholar 

  15. Flower, A.: The mathematics of model for climatology and environment. NATO ASI Ser. 48, 302–336 (1996)

    Google Scholar 

  16. Gottlieb, S., Shu, C., Tadmor, E.: Strong stability preserving high order time discretization methods. SIAM Rev. 43, 89–112 (2001)

    Article  MathSciNet  Google Scholar 

  17. Harten, A., Engquist, B., Osher, S., Chakravarthy, S.: Uniformly high order accurate essentially non-oscillatory schemes. J. Comput. Phys. 71, 231 (1987)

    Article  MathSciNet  Google Scholar 

  18. Henrick, A., Aslam, T.D., Powers, J.M.: Mapped weighted essentially non-oscillatory schemes: achieving optimal order near critical points. J. Comput. Phys. 207(2), 542–567 (2005)

    Article  Google Scholar 

  19. Holden, H., Karlsen, K.H., Lie, K.A.: Operator splitting methods for degenerate convection-diffusion equations ii: Numerical examples with emphasis on reservoir simulation and sedimentation. Comput. Geosci. 4, 287–322 (2000)

    Article  Google Scholar 

  20. Hu, C., Shu, C.W.: Weighted essentially non-oscillatory schemes on triangular meshes. J. Comput. Phys. 150, 97–127 (1999)

    Article  MathSciNet  Google Scholar 

  21. Jerez, S., Parés, C.: Entropy stable schemes for degenerate convection-diffusion equations. SIAM J. Numer. Anal. 55, 240–264 (2017)

    Article  MathSciNet  Google Scholar 

  22. Jiang, G., Shu, C.: Efficient implementation of weighted eno schemes. J. Comput. Phys. 126, 202–228 (1996)

    Article  MathSciNet  Google Scholar 

  23. Karlsen, K., Lie, K.: An unconditionally stable splitting for a class of nonlinear parabolic equations. IMA J. Numer. Anal. 19, 609–635 (1999)

    Article  MathSciNet  Google Scholar 

  24. Kurganov, A., Tadmor, E.: New high-resolution central schemes for nonlinear conservation laws and convection-diffusion equations. J. Comput. Phys. 160(1), 241–282 (2000)

    Article  MathSciNet  Google Scholar 

  25. Liu, X., Osher, S., Chan, T.: Weighted essentially non-oscillatory schemes. J. Comput. Phys. 115, 200–212 (1994)

    Article  MathSciNet  Google Scholar 

  26. Liu, Y., Shu, C., Zhang, M.: High order finite difference weno schemes for nonlinear degenerate parabolic equations. SIAM J. Sci. Comput. 33(2), 939–965 (2011)

    Article  MathSciNet  Google Scholar 

  27. Muskat, M.: The flow of homogeneous fluids through porous media, 1st edn. McGraw-Hill Book Co., New York (1937)

    MATH  Google Scholar 

  28. Proft J, R.B.: Discontinuous galerkin methods for convection-diffusion equations for varying and vanishing diffusivity. International Journal of Numerical Analysis & Modeling. 6(4) (2009)

  29. Shi, J., Hu, C., Shu, C.W.: A technique of treating negative weights in weno schemes. J. Comput. Phys. 175, 108–127 (2002)

    Article  Google Scholar 

  30. Shu, C.: Essentially non-oscillatory and weighted essentially non-oscillatory schemes for hyperbolic conservation laws. Adv. Numer. Approx. Nonlinear Hyperbolic Equ. 1697, 325–432 (1988)

    Article  MathSciNet  Google Scholar 

  31. Shu, C.W., Osher, S.: Efficient implementation of essentially non oscillatory schemes iii. J. Comput. Phys. 71, 231–303 (1987)

    Article  MathSciNet  Google Scholar 

  32. Yamaleev, N.K., Carpenter, M.: A systematic methodology for constructing high order energy stable weno schemes. J. Comput. Phys. 11, 4248–4272 (2009)

    Article  MathSciNet  Google Scholar 

  33. Zhang, Q., Wu, Z.: Numerical simulation for porous medium equation by local discontinuous galerkin finite element method. J. Sci. Comput. 38, 127–148 (2009)

    Article  MathSciNet  Google Scholar 

  34. Zhang, S., Shu, C.W.: A new smoothness indicator for the weno schemes and its effect on the convergence to steady state solutions. J. Sci. Comput. 31, 273–305 (2007)

    Article  MathSciNet  Google Scholar 

Download references

Acknowledgements

This work was supported by CONACyT (México) (Project No. CB-2016 286437).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. Jerez.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

WENO34 and WENO56 Reconstructions

WENO34 and WENO56 Reconstructions

Here, we develop WENO reconstructions for the fluxes \({\hat{f}}_{i+1/2}\), \({\hat{K}}_{i+1/2}\) and for the subfluxes \({\hat{f}}^{m_1}_{i+1/2}\), \({\hat{K}}^{m_2}_{i+1/2}\) defined in (8) associated to the stencils \(S_f\) and \(S_K\) proposed in (5) for \(r=1,2\).

Let us start for the case \(r=1\) where the stencils are

$$\begin{aligned} S_f=\{x_{i-1},x_i,x_{i+1}\};\quad S_K=\{x_{i-1},x_i,x_{i+1},x_{i+2}\}, \end{aligned}$$

and the substencils are

$$\begin{aligned} S^{m_1}_f=\{x_{i-1+m_1},x_{i+m_1}\};\quad S^{m_2}_K=\{x_{i-1+m_2},x_{i+m_2}\}, \end{aligned}$$

for \(m_1=0,1\) and \(m_2=0,1,2.\) Using the values \(f(u_{i-1}),f(u_{i}),f(u_{i+1})\), we approximate \(f(u_{i+1/2})\) constructing a quadratic polynomial q(x). Obtaining

$$\begin{aligned} {\hat{f}}_{i+1/2}(x_{i-1},x_i,x_{i+1})=q(x_{i+1/2})=-\frac{1}{6}f(u_{i-1})+\frac{5}{6}f(u_{i})+\frac{1}{3}f(u_{i+1}). \end{aligned}$$

Analogously, we calculate polynomials \(q^0(x)\) and \(q^1(x)\) by considering values \(f(u_{i-1}),f(u_{i})\) and \(f(u_{i}),f(u_{i+1})\), respectively. Thus,

$$\begin{aligned} {\hat{f}}^0_{i+1/2}(x_{i-1},x_i)=q^0(x_{i+1/2})=-\frac{1}{2}f(u_{i-1})+\frac{3}{2}f(u_{i}) \end{aligned}$$

and

$$\begin{aligned} {\hat{f}}^1_{i+1/2}(x_{i},x_{i+1})=q^1(x_{i+1/2})=\frac{1}{2}f(u_{i})+\frac{1}{2}f(u_{i+1}). \end{aligned}$$

Notice that \({\hat{f}}_{i+1/2}=\frac{1}{3}{\hat{f}}^0_{i+1/2}+\frac{2}{3}{\hat{f}}^1_{i+1/2}\) which is according to Table 1. Now the WENO reconstruction for the convective flux is

$$\begin{aligned} {\hat{f}}_{i+1/2}=\omega _0^f{\hat{f}}^0_{i+1/2}+\omega _1^f{\hat{f}}^1_{i+1/2} \end{aligned}$$

where \(\omega _0^f\), \(\omega _1^f\) are defined in (9). For the diffusive flux, we get

$$\begin{aligned} {\hat{K}}_{i+1/2}(x_{i-1},x_i,x_{i+1},x_{i+2})=p(x_{i+1/2})= \frac{K_{i-1}-15K_{i}+15K_{i+1}-K_{i+2}}{12}. \end{aligned}$$

In a similar way, using the points \(\{K_{i-1+m_2},K_{i+m_2}\}\) with \(m_2=0,1,2\), we get the polynomials \(p^0(x)\), \(p^1(x)\) and \(p^2(x)\) satisfying

$$\begin{aligned}&{\hat{K}}^0_{i+1/2}(x_{i-1},x_{i})=p^0(x_{i+1/2})=K_i-K_{i-1},\\&{\hat{K}}^1_{i+1/2}(x_{i},x_{i+1})=p^1(x_{i+1/2})=K_{i+1}-K_{i},\\&{\hat{K}}^2_{i+1/2}(x_{i+1},x_{i+2})=p^2(x_{i+1/2})=K_{i+2}-K_{i+1}. \end{aligned}$$

It is easy to show that \(c_0^K=-1/12,c_1^K=7/6,c_2^K=-1/12\). Therefore,

$$\begin{aligned} p(x_{i+1/2})=-\frac{1}{12}p^0(x_{i+1/2})+\frac{7}{6}p^1(x_{i+1/2})-\frac{1}{12}p^2(x_{i+1/2}). \end{aligned}$$

Following the steps described in Section 2.1, we have \(\sigma ^+ =\frac{5}{2}\) and \(\sigma ^- =\frac{3}{2}\). So, the positive and negative weights are

$$\begin{aligned} \gamma ^+_0=\frac{1}{30},\gamma ^+_1=\frac{14}{15},\gamma ^+_2=\frac{1}{30}, \end{aligned}$$

and

$$\begin{aligned} \gamma ^-_0=\frac{1}{9},\gamma ^-_1=\frac{7}{9},\gamma ^-_2=\frac{1}{9}. \end{aligned}$$

Now we compute the nonlinear weights which are given by

$$\begin{aligned} \omega ^K_{m_2}=\frac{5}{2}\omega ^+_m-\frac{3}{2}\omega ^-_{m_2} \end{aligned}$$

where \(\omega ^+_{m_2}\) and \(\omega ^-_{m_2}\) are defined in (12). Finally, the reconstruction for the diffusive flux is

$$\begin{aligned} {\hat{K}}_{i+1/2}=\omega _0^K{\hat{K}}^0_{i+1/2}+\omega _1^K{\hat{K}}^1_{i+1/2}+\omega _2^K{\hat{K}}^2_{i+1/2}. \end{aligned}$$

For the case \(r=2\), we have

$$\begin{aligned} S_f=\{x_{i-2},x_{i-1},x_{i},x_{i+1},x_{i+2}\};\quad S_K=\{x_{i-2},x_{i-1},x_{i},x_{i+1},x_{i+2},x_{i+3}\}. \end{aligned}$$

Using the same procedure for the case \(r=1\), we get

$$\begin{aligned}&{\hat{f}}_{i+1/2}(x_{i-2},x_{i-1},x_{i},x_{i+1},x_{i+2})=q(x_{i+1/2})\\&\quad =\frac{1}{30}f(u_{i-2})-\frac{13}{60}f(u_{i-1})+\frac{47}{60}f(u_{i})+\frac{9}{20}f(u_{i+1})-\frac{1}{20}f(u_{i+2}). \end{aligned}$$

Considering \( S^{m_1}_f=\{x_{i-2+m_1},x_{i-1+m_1},x_{i+m_1}\}\) for \(m_1=0,1,2\), we compute the fluxes

$$\begin{aligned}&{\hat{f}}^0_{i+1/2}(x_{i-2},x_{i-1},x_{i})=q^0(x_{i+1/2})=\frac{1}{3}f_{i-2}-\frac{7}{6}f_{i-1}+\frac{11}{6}f_{i},\\&{\hat{f}}^{(1)}_{i+1/2}(x_{i-1},x_{i},x_{i+1})=q^1(x_{i+1/2})=-\frac{1}{6}f_{i-1}+\frac{5}{6}f_{i}+\frac{1}{3}f_{i+1},\\&{\hat{f}}^{(2)}_{i+1/2}(x_{i},x_{i+1},x_{i+2})=q^2(x_{i+1/2})=\frac{1}{3}f_{i}+\frac{5}{6}f_{i+1}-\frac{1}{6}f_{i+2}. \end{aligned}$$

and the WENO reconstruction for the convective flux is obtained substituting into equation (7) for \({\hat{f}}_{i+1/2}\) and \(\omega _{m_1}^f\) defined in (9). For the diffusive flux, we consider the substencil

$$\begin{aligned} S^{m_2}_K=\{x_{i-2+m_2},x_{i-1+m_2},x_{i+m_2},x_{i+1+m_2}\}, \end{aligned}$$

for \(m_2=0,1,2\) and we get

$$\begin{aligned}&{\hat{K}}_{i+1/2}(x_{i-2},x_{i-1},x_{i},x_{i+1},x_{i+2},x_{i+3})=p(x_{i+1/2})\\&\quad =\frac{-2K_{i-3}+25K_{i-2}-245K_{i-1}+245K_{i}-25K_{i+1}+2K_{i+2}}{180} \end{aligned}$$

with

$$\begin{aligned}&{\hat{K}}^0_{i+1/2}(x_{i-2},x_{i-1},x_{i},x_{i+1})=p^0(x_{i+1/2})=\frac{K_{i-2}-3K_{i-1}-9K_{i}+11K_{i+1}}{12},\\&{\hat{K}}^1_{i+1/2}(x_{i-1},x_{i},x_{i+1},x_{i+2})=p ^1(x_{i+1/2})=\frac{K_{i-1}-15K_{i}+15K_{i+1}-K_{i+2}}{12},\\&{\hat{K}}^2_{i+1/2}(x_{i},x_{i+1},x_{i+2},x_{i+3})=p^2(x_{i+1/2})=\frac{-11K_{i}+9K_{i+1}+3K_{i+2}-K_{i+3}}{12}. \end{aligned}$$

The corresponding linear weights satisfy

$$\begin{aligned} {\hat{K}}_{i+1/2}=-\frac{2}{15}{\hat{K}}^0_{i+1/2}+\frac{19}{15}{\hat{K}}^1_{i+1/2}-\frac{2}{15}{\hat{K}}^2_{i+1/2}. \end{aligned}$$

and to calculate the nonlinear weights, we have \(\sigma ^+ =\frac{42}{15}\) and \(\sigma ^- =\frac{27}{15}\). Thus, the positive and negative weights are

$$\begin{aligned} \gamma ^+_0=\frac{1}{21},\gamma ^+_1=\frac{19}{21},\gamma ^+_2=\frac{1}{21}, \end{aligned}$$

and

$$\begin{aligned} \gamma ^-_0=\frac{4}{27},\gamma ^-_1=\frac{19}{27},\gamma ^-_2=\frac{4}{27}. \end{aligned}$$

Finally the non-linear weights are obtained by

$$\begin{aligned} \omega ^K_m=\frac{42}{15}\omega ^+_m-\frac{27}{15}\omega ^-_m \end{aligned}$$

with \(\omega ^+_m\) and \(\omega ^-_m\) given in (12), and the WENO reconstruction is written of the form

$$\begin{aligned} {\hat{K}}_{i+1/2}=\omega _0^K{\hat{K}}^0_{i+1/2}+\omega _1^K{\hat{K}}^1_{i+1/2}+\omega _2^K{\hat{K}}^2_{i+1/2}. \end{aligned}$$

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Diaz-Adame, R., Jerez, S. & Carrillo, H. Fast and Optimal WENO Schemes for Degenerate Parabolic Conservation Laws. J Sci Comput 90, 22 (2022). https://doi.org/10.1007/s10915-021-01689-4

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10915-021-01689-4

Keywords

Mathematics Subject Classification

Navigation