Abstract
In this paper, we investigate a posteriori error estimates of the Galerkin spectral methods for second-order equations, and propose a simple type of error estimator comprising expansion coefficients of known quantities such as the right-hand term. We first show that the errors of the numerical solution of the Poisson equation on the unit ball in arbitrary dimensions can be identified by the approximation errors of the (weighted) \(L^2\)-projection of the right-hand function together with the non-homogeneous boundary function. This result indicates that the decay rate of the high frequency coefficients of the right-hand term in weighted orthogonal ball polynomials and of the boundary term in spherical harmonics serves as an ideal a posteriori error estimator. In the sequel, we establish a posteriori error estimates on the Galerkin spectral method applied to the singular perturbation problem of a reaction–diffusion equation on the unit ball. Again, the efficiency is given by the approximation errors of the weighted \(L^2\)-projection of the right-hand function; while the reliability is determined by the truncation errors of the right-hand function together with exponentially decaying multiples of the low frequency coefficients, which also reveals that the a posterior error estimator is dominated by the decay rate of the high frequency coefficients of the right-hand term. Finally, numerical examples are presented to illustrate the theoretical results.



Similar content being viewed by others
References
Ainsworth, M., Oden, J.: A procedure for a posteriori error estimation for \(h\)-\(p\) finite element methods. Comput. Methods Appl. Mech. Eng. 101(1), 73–96 (1992)
Ainsworth, M., Oden, J.: A posteriori error estimators for second order elliptic systems. Part 1: theoretical foundations and a posteriori error analysis. Comput. Math. Appl. 25(2), 101–113 (1993)
Ainsworth, M., Oden, J.: A posteriori error estimation in finite element analysis. Comput. Methods Appl. Mech. Eng. 142(1), 1–88 (1997)
Ainsworth, M., Oden, J.: A Posteriori Error Estimation in Finite Element Analysis. Wiley, New York (2011)
Babuška, I., Rheinboldt, W.: A-posteriori error estimates for the finite element method. Int. J. Numer. Methods Eng. 12(10), 1597–1615 (1978)
Bank, R., Weiser, A.: Some a posteriori error estimates for elliptic partial differential equations. Math. Comput. 44(17), 283–301 (1985)
Bernardi, C., Maday, Y.: Spectral methods. In: Techniques of Scientific Computing (Part 2). Handbook of Numerical Analysis, vol. 5, pp. 209–485. Elsevier, Amsterdam (1997)
Boyd, J.: Chebyshev and Fourier Spectral Methods, 2nd edn. Dover Publications, New York (2000)
Brenner, S., Scott, L.: The Mathematical Theory of Finite Element Methods, 3rd edn. Springer, New York (2010)
Bürg, M.: A residual-based a posteriori error estimator for the \(hp\)-finite element method for Maxwell’s equations. Appl. Numer. Math. 62(8), 922–940 (2012)
Canuto, C., Hussaini, M., Quarteroni, A., Zang, T.: Spectral Methods: Fundamentals in Single Domains. Springer, Berlin (2006)
Canuto, C., Hussaini, M., Quarteroni, A., Zang, T.: Spectral Methods: Evolution to Complex Geometries and Applications to Fluid Dynamics. Springer, Berlin (2007)
Carstensen, C., Bartels, S., Jansche, S.: A posteriori error estimates for nonconforming finite element methods. Numer. Math. 92(2), 233–256 (2002)
Chen, M., Xu, L.: An a posteriori error estimate for a spectral method for a second-order elliptic differential equation with variable coefficients. Numer. Math. J. Chin. Univ. (English Series) 1, 60–68 (2005)
Chen, Y., Huang, Y., Yi, N.: A posteriori error estimates of spectral method for optimal control problems governed by parabolic equations. Sci. China Ser. A Math. 51, 1376–1390 (2008)
Dai, F., Xu, Y.: Approximation Theory and Harmonic Analysis on Spheres and Balls. Springer Monographs in Mathematics, Springer, New York (2013)
Dari, E., Duran, R., Padra, C.: Error estimators for nonconforming finite element approximations of the Stokes problem. Math. Comput. 64, 1017–1033 (1995)
Ghanem, R., Sissaoui, H.: A posteriori error estimate by a spectral method of an elliptic optimal control problem. J. Comput. Math. Optim. 2, 111–125 (2006)
Gottlieb, D., Orszag, S.: Numerical Analysis of Spectral Methods: Theory and Applications. Society for Industrial and Applied Mathematics (1977)
Guo, B.-Q.: Recent progress on a posteriori error analysis for the p and h-p finite element methods. Contemp. Math. 383, 47–61 (2005)
Guo, B.-Y.: Spectral Methods and Their Applications. World Scientific, Singapore (1998)
Han, J., Zhang, Z., Yang, Y.: A new adaptive mixed finite element method based on residual type a posterior error estimates for the Stokes eigenvalue problem. Numer. Methods Part. Differ. Equ. 31, 31–53 (2015)
Kalnay de Rivas, E.: On the use of nonuniform grids in finite-difference equations. J. Comput. Phys. 10, 202–210 (1972)
Karniadakis, G., Sherwin, S.: Spectral/hp Element Methods for Computational Fluid Dynamics, 2nd edn. Oxford University Press, Oxford (2005)
Li, H., Xu, Y.: Spectral approximation on the unit ball. SIAM J. Numer. Anal. 52(6), 2647–2675 (2014)
Lin, R., Stynes, M.: A balanced finite element method for singularly perturbed reaction–diffusion problems. SIAM J. Numer. Anal. 50(5), 2729–2743 (2012)
Liu, W., Ma, H., Tang, T., Yan, N.: A posteriori error estimates for discontinuous Galerkin time-stepping method for optimal control problems governed by parabolic equations. SIAM J. Numer. Anal. 42, 1032–1061 (2004)
Melenk, J.: \(hp\)-interpolation of nonsmooth functions and an application to \(hp\)—a posteriori error estimation. SIAM J. Numer. Anal. 43(1), 127–155 (2005)
Melenk, J., Wohlmuth, B.: On residual-based a posteriori error estimation in \(hp\)-FEM. Adv. Comput. Math. 15, 311–331 (2001)
Oberkampf, W., Roy, C.: Verification and Validation in Scientific Computing. Cambridge University Press, Cambridge (2010)
Orszag, S.A., Israeli, M.: Numerical simulation of viscous incompressible flows. Annu. Rev. Fluid Mech. 6, 281–318 (1974)
Owens, R.: A posteriori error estimates for spectral element solutions to viscoelastic flow problems. Comput. Methods Appl. Mech. Eng. 164(3), 375–395 (1998)
Pérez, T., Piñar, M., Xu, Y.: Weighted Sobolev orthogonal polynomials on the unit ball. J. Approx. Theory 171, 84–104 (2013)
Ramanujan, S.: The Lost Notebook and Other Unpublished Papers, with an Introduction by George E. Andrews. Narosa Publishing House, New Delhi (1988)
Sauter, S., Zech, J.: A posteriori error estimation of \(hp\)-DG finite element methods for highly indefinite Helmholtz problems. SIAM J. Numer. Anal. 53, 2414–2440 (2015)
Schwab, C.: \(p\)-and \(hp\)-Finite Element Methods: Theory and Applications in Solid and Fluid Mechanis. Clarendon Press, Oxford (1998)
Schwab, C., Suri, M.: The \(p\) and \(hp\) versions of the finite element method for problems with boundary layers. Math. Comput. 65(216), 1403–1429 (1996)
Szegö, G.: Orthogonal Polynomials. AMS, Providence (1975)
Temme, N.: Orthogonal Polynomials. AMS Colloquium Publications, New York (1939)
Triebel, H.: Interpolation Theory Function Spaces Differential Operators. North-Holland Pub. Co., Amsterdam (1978)
Verführth, R.: A Review of a Posteriori Error Estimation and Adaptive Mesh-Refinement Techniques. Advances in Numerical Mathematics, Wiley-Teubner, New York (1996)
Wang, W., Xu, C.: A posteriori error estimation of spectral and spectral element methods for the Stokes/Darcy coupled problem. J. Math. Study 47, 85–110 (2014)
Wiberg, N.-E., Li, X.: Super convergent patch recovery of finite-element solution and a posteriori \(l_2\) norm error estimate. Commun. Numer. Methods Eng. 10, 313–320 (1994)
Yi, L., Guo, B.-Q.: A-posteriori error estimation for the Legendre spectral Galerkin method in one-dimension. Numer. Math. Theory Methods Appl. 3, 40–52 (2010)
Zhang, J., Li, H., Wang, L.-L., Zhang, Z.: Ball prolate spheroidal wave functions in arbitrary dimensions. Appl. Comput. Harmon. Anal (2018)
Zhang, Z., Zhu, J.: Analysis of the superconvergent patch recovery technique and a posteriori error estimator in the finite element method (I). Comput. Methods Appl. Mech. Eng. 123, 173–187 (1995)
Zhou, J., Yang, D.: An improved a posteriori error estimate for the Galerkin spectral method in one dimension. Comput. Math. Appl. 61(2), 334–340 (2011)
Zhou, J., Zhang, J., Jiang, Z.: The a posteriori error estimates of Chebyshev–Petrov–Galerkin methods for second-order equations. Appl. Math. Lett. 60, 126–134 (2016)
Zienkiewicz, O.: The background of error estimation and adaptivity in finite element computations. Comput. Methods Appl. Mech. Eng. 195(4), 207–213 (2006)
Zienkiewicz, O., Zhu, J.: A simple error estimator and adaptive procedure for practical engineering analysis. Int. J. Numer. Methods Eng. 24, 337–357 (1987)
Zienkiewicz, O., Zhu, J.: The super convergent patch recovery and a posteriori error estimates. Part 1: the recovery technique. Int. J. Numer. Methods Eng. 33(7), 1331–1364 (1992)
Author information
Authors and Affiliations
Corresponding author
Additional information
Publisher's Note
Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
The first author was supported in part by the NSFC (No. 11926355), NSF of Shandong (No. ZR2019YQ05, 2019KJI003), and China Postdoctoral Science Foundation (No. 2017M610751 and No. 2017T100030) The second author was supported in part by the National Key R&D Program of China (No. 2018YFB0204404) and NSFC (No. 11871145 and No. 11971016). The third author was supported in part by the NSFC (No. 11871092, No. 12131005 and NSAF U1930402).
Rights and permissions
About this article
Cite this article
Zhou, J., Li, H. & Zhang, Z. A Posteriori Error Estimates of Spectral Approximations for Second Order Partial Differential Equations in Spherical Geometries. J Sci Comput 90, 56 (2022). https://doi.org/10.1007/s10915-021-01696-5
Received:
Revised:
Accepted:
Published:
DOI: https://doi.org/10.1007/s10915-021-01696-5
Keywords
- Galerkin spectral approximation
- A posteriori error estimate
- Decaying coefficients
- Reaction–diffusion equation
- Singular perturbation