Abstract
Convolution plays a crucial role in various applications in signal and image processing, analysis, and recognition. It is also the main building block of convolution neural networks (CNNs). Designing appropriate convolution neural networks on manifold-structured point clouds can inherit and empower recent advances of CNNs to analyzing and processing point cloud data. However, one of the major challenges is to define a proper way to “sweep”filters through the point cloud as a natural generalization of the planar convolution and to reflect the point cloud’s geometry at the same time. In this paper, we consider generalizing convolution by adapting parallel transport on the point cloud. Inspired by a triangulated surface-based method [46], we propose the Narrow-Band Parallel Transport Convolution (NPTC) using a specifically defined connection on a voxel-based narrow-band approximation of point cloud data. With that, we further propose a deep convolutional neural network based on NPTC (called NPTC-net) for point cloud classification and segmentation. Comprehensive experiments show that the proposed NPTC-net achieves similar or better results than current state-of-the-art methods on point cloud classification and segmentation.







Similar content being viewed by others
References
Abadi, M., Agarwal, A., Barham, P., Brevdo, E., Chen, Z., Citro, C., Corrado, G.S., Davis, A., Dean, J., Devin, M., et al.: Tensorflow: Large-scale machine learning on heterogeneous distributed systems. arXiv preprint arXiv:1603.04467 (2016)
Adalsteinsson, D., Sethian, J.A.: A fast level set method for propagating interfaces. J. Comput. Phys. 118(2), 269–277 (1995)
Armeni, I., Sener, O., Zamir, A.R., Jiang, H., Brilakis, I., Fischer, M., Savarese, S.: 3d semantic parsing of large-scale indoor spaces. In: 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 1534–1543. IEEE Computer Society, Los Alamitos, CA, USA (2016).10.1109/CVPR.2016.170. https://doi.ieeecomputersociety.org/10.1109/CVPR.2016.170
Bindu, V., Nair, K.R.: A fast narrow band level set formulation for shape extraction. In: The Fifth International Conference on the Applications of Digital Information and Web Technologies (ICADIWT 2014), pp. 137–142. IEEE (2014)
Boscaini, D., Masci, J., Rodolà, E., Bronstein, M.: Learning shape correspondence with anisotropic convolutional neural networks. In: D.D. Lee, M. Sugiyama, U.V. Luxburg, I. Guyon, R. Garnett (eds.) Advances in Neural Information Processing Systems 29, pp. 3189–3197. Curran Associates, Inc. (2016). http://papers.nips.cc/paper/6045-learning-shape-correspondence-with-anisotropic-convolutional-neural-networks.pdf
Bronstein, M.M., Bruna, J., LeCun, Y., Szlam, A., Vandergheynst, P.: Geometric deep learning: going beyond euclidean data. IEEE Signal Process. Mag. 34(4), 18–42 (2017). https://doi.org/10.1109/MSP.2017.2693418
Bruna, J., Zaremba, W., Szlam, A., Lecun, Y.: Spectral networks and locally connected networks on graphs. In: International Conference on Learning Representations (ICLR2014), CBLS, April 2014 (2014)
Cao, W., Yan, Z., He, Z., He, Z.: A comprehensive survey on geometric deep learning. IEEE Access 8, 35929–35949 (2020)
Defferrard, M., Bresson, X., Vandergheynst, P.: Convolutional neural networks on graphs with fast localized spectral filtering. In: D.D. Lee, M. Sugiyama, U.V. Luxburg, I. Guyon, R. Garnett (eds.) Advances in Neural Information Processing Systems 29, pp. 3844–3852. Curran Associates, Inc. (2016). http://papers.nips.cc/paper/6081-convolutional-neural-networks-on-graphs-with-fast-localized-spectral-filtering.pdf
Dong, B.: Sparse representation on graphs by tight wavelet frames and applications. Appl. Comput. Harmonic Anal. 42(3), 452–479 (2017)
Eldar, Y., Lindenbaum, M., Porat, M., Zeevi, Y.Y.: The farthest point strategy for progressive image sampling. IEEE Trans. on Image Process. 6(9), 1305–1315 (1997)
Franke, R., Nielson, G.M.: Scattered data interpolation and applications: a tutorial and survey. Geomet. Model. pp. 131–160 (1991)
Goodfellow, I., Bengio, Y., Courville, A.: Deep learning. MIT press (2016)
Grevera, G.J., Udupa, J.K.: An objective comparison of 3-d image interpolation methods. IEEE Trans. Med. Imaging 17(4), 642–652 (1998)
Hammond, D.K., Vandergheynst, P., Gribonval, R.: Wavelets on graphs via spectral graph theory. Appl. Comput. Harmonic Anal. 30(2), 129–150 (2011)
Helgason, S.: Differential geometry, Lie groups, and symmetric spaces, vol. 80. Academic press (1979)
Henaff, M., Bruna, J., LeCun, Y.: Deep convolutional networks on graph-structured data. arXiv preprint arXiv:1506.05163 (2015)
Hojjatoleslami, S., Kittler, J.: Region growing: a new approach. IEEE Trans. Image process. 7(7), 1079–1084 (1998)
Jiang, M., Zhong, Y., Wang, X., Huang, X., Guo, R.: Improve the nonparametric image segmentation with narrowband levelset and fast gauss transformation (2012)
Katznelson, Y.: An introduction to harmonic analysis. Cambridge University Press (2004)
Kingma, D.P., Ba, J.: Adam: A method for stochastic optimization. In: Y. Bengio, Y. LeCun (eds.) 3rd International Conference on Learning Representations, ICLR 2015, San Diego, CA, USA, May 7-9, 2015, Conference Track Proceedings (2015). arXiv:1412.6980
Klokov, R., Lempitsky, V.: Escape from cells: Deep kd-networks for the recognition of 3d point cloud models. In: 2017 IEEE International Conference on Computer Vision (ICCV), pp. 863–872. IEEE Computer Society, Los Alamitos, CA, USA (2017). 10.1109/ICCV.2017.99. https://doi.ieeecomputersociety.org/10.1109/ICCV.2017.99
Knebelman, M.: Spaces of relative parallelism. Ann. Math. pp. 387–399 (1951)
Kobayashi, S., Nomizu, K.: Foundations of differential geometry, vol. 2. Interscience publishers New York (1969)
Koren, Y., Bell, R., Volinsky, C.: Matrix factorization techniques for recommender systems. Computer 42(8), 30–37 (2009)
Lai, R., Liang, J., Zhao, H.: A local mesh method for solving pdes on point clouds. Inverse Prob. Imaging 7(3), 737–755 (2013)
LeCun, Y., Bengio, Y., Hinton, G.: Deep learning. nature 521(7553), 436 (2015)
Levie, R., Monti, F., Bresson, X., Bronstein, M.M.: Cayleynets: Graph convolutional neural networks with complex rational spectral filters. IEEE Trans. Sig. Process. 67(1), 97–109 (2019). https://doi.org/10.1109/TSP.2018.2879624
Li, J., Chen, B.M., Hee Lee, G.: So-net: Self-organizing network for point cloud analysis. In: The IEEE Conference on Computer Vision and Pattern Recognition (CVPR) (2018)
Li, Y., Bu, R., Sun, M., Wu, W., Di, X., Chen, B.: Pointcnn: Convolution on x-transformed points. In: S. Bengio, H. Wallach, H. Larochelle, K. Grauman, N. Cesa-Bianchi, R. Garnett (eds.) Advances in Neural Information Processing Systems 31, pp. 820–830. Curran Associates, Inc. (2018). http://papers.nips.cc/paper/7362-pointcnn-convolution-on-x-transformed-points.pdf
Li, Y., Ma, L., Zhong, Z., Liu, F., Chapman, M.A., Cao, D., Li, J.: Deep learning for lidar point clouds in autonomous driving: a review. IEEE Transactions on Neural Networks and Learning Systems (2020)
Liu, W., Sun, J., Li, W., Hu, T., Wang, P.: Deep learning on point clouds and its application: A survey. Sensors 19(19), 4188 (2019)
Lorensen, W.E., Cline, H.E.: Marching cubes: a high resolution 3d surface construction algorithm. ACM siggraph computer graphics 21(4), 163–169 (1987)
Mao, J., Wang, X., Li, H.: Interpolated convolutional networks for 3d point cloud understanding. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 1578–1587 (2019)
Masci, J., Boscaini, D., Bronstein, M.M., Vandergheynst, P.: Geodesic convolutional neural networks on riemannian manifolds. In: The IEEE International Conference on Computer Vision (ICCV) Workshops (2015)
Monti, F., Boscaini, D., Masci, J., Rodola, E., Svoboda, J., Bronstein, M.M.: Geometric deep learning on graphs and manifolds using mixture model cnns. In: The IEEE Conference on Computer Vision and Pattern Recognition (CVPR) (2017)
Morgan, H.L.: The generation of a unique machine description for chemical structures-a technique developed at chemical abstracts service. J. Chem. Document. 5(2), 107–113 (1965)
Osher, S., Fedkiw, R.: Level set methods and dynamic implicit surfaces, vol. 153. Springer Science & Business Media (2006)
Osher, S., Sethian, J.A.: Fronts propagating with curvature-dependent speed: algorithms based on hamilton-jacobi formulations. J. Comput. Phys. 79(1), 12–49 (1988)
Pal, S.K., Mitra, S.: Multilayer perceptron, fuzzy sets, classifiaction (1992)
Qi, C.R., Su, H., Mo, K., Guibas, L.J.: Pointnet: Deep learning on point sets for 3d classification and segmentation. In: The IEEE Conference on Computer Vision and Pattern Recognition (CVPR) (2017)
Qi, C.R., Yi, L., Su, H., Guibas, L.J.: Pointnet++: Deep hierarchical feature learning on point sets in a metric space. In: I. Guyon, U.V. Luxburg, S. Bengio, H. Wallach, R. Fergus, S. Vishwanathan, R. Garnett (eds.) Advances in Neural Information Processing Systems 30, pp. 5099–5108. Curran Associates, Inc. (2017). http://papers.nips.cc/paper/7095-pointnet-deep-hierarchical-feature-learning-on-point-sets-in-a-metric-space.pdf
Robbins, H., Monro, S.: A stochastic approximation method. The annals of mathematical statistics pp. 400–407 (1951)
Rosenthal, P., Linsen, L.: Smooth surface extraction from unstructured point-based volume data using pdes. IEEE Trans. Visual. Comput. Graph. 14(6), 1531–1546 (2008)
Rosenthal, P., Molchanov, V., Linsen, L.: A narrow band level set method for surface extraction from unstructured point-based volume data
Schonsheck, S.C., Dong, B., Lai, R.: Parallel transport convolution: A new tool for convolutional neural networks on manifolds. CoRR abs/1805.07857 (2018). arXiv:1805.07857
Sethian, J.A.: A fast marching level set method for monotonically advancing fronts. Proceed. Natl. Acad. Sci. 93(4), 1591–1595 (1996)
Shorten, C., Khoshgoftaar, T.M.: A survey on image data augmentation for deep learning. J. Big Data 6(1), 1–48 (2019)
Tatarchenko, M., Park, J., Koltun, V., Zhou, Q.Y.: Tangent convolutions for dense prediction in 3d. In: The IEEE Conference on Computer Vision and Pattern Recognition (CVPR) (2018)
Tchapmi, L., Choy, C., Armeni, I., Gwak, J., Savarese, S.: Segcloud: Semantic segmentation of 3d point clouds. In: 2017 International Conference on 3D Vision (3DV), pp. 537–547 (2017). 10.1109/3DV.2017.00067
Thomas, H., Qi, C.R., Deschaud, J.E., Marcotegui, B., Goulette, F., Guibas, L.J.: Kpconv: Flexible and deformable convolution for point clouds. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 6411–6420 (2019)
Wang, C., Samari, B., Siddiqi, K.: Local spectral graph convolution for point set feature learning. In: The European Conference on Computer Vision (ECCV) (2018)
Wang, S., Suo, S., Ma, W.C., Pokrovsky, A., Urtasun, R.: Deep parametric continuous convolutional neural networks. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 2589–2597 (2018)
Wang, Y., Sun, Y., Liu, Z., Sarma, S.E., Bronstein, M.M., Solomon, J.M.: Dynamic graph CNN for learning on point clouds. CoRR abs/1801.07829 (2018). arXiv:1801.07829
Wu, W., Qi, Z., Li, F.: Pointconv: Deep convolutional networks on 3d point clouds. CoRR abs/1811.07246 (2018). arXiv:1811.07246
Wu, Z., Song, S., Khosla, A., Yu, F., Zhang, L., Tang, X., Xiao, J.: 3d shapenets: A deep representation for volumetric shapes. In: The IEEE Conference on Computer Vision and Pattern Recognition (CVPR) (2015)
Xu, Y., Fan, T., Xu, M., Zeng, L., Qiao, Y.: Spidercnn: Deep learning on point sets with parameterized convolutional filters. In: The European Conference on Computer Vision (ECCV) (2018)
Yang, Y., Liu, S., Pan, H., Liu, Y., Tong, X.: Pfcnn: convolutional neural networks on 3d surfaces using parallel frames. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 13578–13587 (2020)
Yang, Z., Litany, O., Birdal, T., Sridhar, S., Guibas, L.: Continuous geodesic convolutions for learning on 3d shapes. In: Proceedings of the IEEE/CVF Winter Conference on Applications of Computer Vision, pp. 134–144 (2021)
Yi, L., Kim, V.G., Ceylan, D., Shen, I.C., Yan, M., Su, H., Lu, C., Huang, Q., Sheffer, A., Guibas, L.: A scalable active framework for region annotation in 3d shape collections. ACM Trans. Graph. 35(6), 210:1–210:12 (2016). 10.1145/2980179.2980238. http://doi.acm.org/10.1145/2980179.2980238
Zhang, C., Luo, W., Urtasun, R.: Efficient convolutions for real-time semantic segmentation of 3d point clouds. In: 2018 International Conference on 3D Vision (3DV), pp. 399–408. IEEE (2018)
Zhao, H.: A fast sweeping method for eikonal equations. Math. Comput. 74(250), 603–627 (2005)
Author information
Authors and Affiliations
Corresponding authors
Additional information
Publisher's Note
Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
R. Lai’s work is supported in part by an NSF Career Award DMS-1752934. Bin Dong is supported in part by Beijing Natural Science Foundation (Z180001), NSFC 12090022 and Beijing Academy of Artificial Intelligence (BAAI)
Rights and permissions
About this article
Cite this article
Jin, P., Lai, T., Lai, R. et al. NPTC-net: Narrow-Band Parallel Transport Convolutional Neural Networks on Point Clouds. J Sci Comput 90, 39 (2022). https://doi.org/10.1007/s10915-021-01699-2
Received:
Revised:
Accepted:
Published:
DOI: https://doi.org/10.1007/s10915-021-01699-2