Abstract
This paper investigates the residual type a posteriori error estimators for a fully discrete approximation to the solution of the time-dependent Poisson–Nernst–Planck equations, which are widely used to describe the electrodiffusion of ions in biomolecular solutions. The backward Euler scheme is used for the discretization in time and the continuous, piecewise linear triangular finite elements are applied to the space discretization. The main results consist in building error estimators and deriving computable upper and lower bounds on the error estimators. Some numerical experiments confirm the theoretical predictions and show the reliability and efficiency of the error estimators.















Similar content being viewed by others
Data Availability Statement
The datasets generated during and/or analysed during the current study are available from the corresponding author on reasonable request.
References
Adams, R.A.: Sobolev Spaces. Academic Press, New York (1975)
Ainsworth, M., Oden, J.T.: A Posteriori Error Estimation in Finite Element Analysis. Wiley (2000)
Akrivis, G., Makridakis, C., Nochetto, R.: A posteriori error estimates for the Crank–Nicolson method for parabolic equations. Math. Comput. 75(254), 511–531 (2005)
Araya, R., Venegas, P.: An a posteriori error estimator for an unsteady advection–diffusion–reaction problem. Comput. Math. Appl. 66(12), 2456–2476 (2014)
Babuška, I., Durán, R., Rodríguez, R.: Analysis of the efficiency of an a posteriori error estimator for linear triangular finite elements. SIAM J. Numer. Anal. 29(4), 947–964 (1992)
Babuška, I., Rheinboldt, C.: Error estimates for adaptive finite element computation. SIAM J. Numer. Anal. 44(4), 75–102 (1978)
Bänsch, E., Karakatsani, F., Makridakis, C.G.: A posteriori error estimates for fully discrete schemes for the time dependent Stokes problem. Calcolo 55, 19 (2018)
Bergam, A., Bernardi, C., Mghazli, Z.: A posteriori analysis of the finite element discretization of some parabolic equations. Math. Comput. 74(251), 1117–1139 (2004)
Bernardi, C., Verfürth, R.: A posteriori error analysis of the fully discretized time-dependent Stokes equations. SeMA J. 38(3), 437–455 (2004)
Bessemoulin-chatard, M., Chainais-hillairet, C., Vignal, M.: Study of a fully implicit scheme for the drift-diffusion system. Asymptotic behavior in the quasi-neutral limit. SIAM J. Numer. Anal. 52(4), 1666–1691 (2013)
Bi, C., Wang, C., Lin, Y.: A posteriori error estimates of two-grid finite element methods for nonlinear elliptic problems. J. Sci. Comput. 74(1), 23–48 (2018)
Bolintineanu, D.S., Sayyed-Ahmad, A., Davis, H.T., Kaznessis, Y.N.: Poisson–Nernst–Planck models of nonequilibrium ion electrodiffusion through a protegrin transmembrane pore. PLoS Comput. Biol. 5(1), e1000277 (2009)
Braess, D., Pillwein, V., Schöberl, J.: Equilibrated residual error estimates are \(p\)-robust. Comput. Methods Appl. Mech. Eng. 198, 1189–1197 (2009)
Brenner, S.C., Scott, L.R.: The Mathematical Theory of Finite Element Methods. Springer, New York (1994)
Brezzi, F., Marini, L.D., Pietra, P.: Numerical simulation of semiconductor devices. Comput. Methods Appl. Mech. Eng. 75(1–3), 493–514 (1989)
Cárdenas, A.E., Coalson, R.D., Kurnikova, M.G.: Three-dimensional Poisson–Nernst–Planck theory studies: influence of membrane electrostatics on gramicidin a channel conductancethe. Biophys. J. 79(1), 80–93 (2000)
Chainais-Hillairet, C., Peng, Y.J.: Finite volume approximation for degenerate drift-diffusion system in several space dimensions. Math. Models Methods Appl. Sci. 14(03), 461–481 (2004)
Chen, Z.M., Ji, G.H.: Sharp \(L^1\) a posteriori error analysis for nonlinear Convection–Diffusion Problems. Math. Comput. 75(253), 43–71 (2006)
Chen, Z.M., Wu, H.J.: Selected Topics in Finite Element Methods. Science Press (2010)
Ciucci, F., Lai, W.: Derivation of micro/macro lithium battery models from homogenization. Transp. Porous Med. 88(2), 249–270 (2011)
Clément, P.: Approximation by finite element functions using local regularization. RAIRO Anal. Numer. 9, 7–84 (1975)
Coalson, R.D., Kurnikova, M.G.: Poisson–Nernst–Planck theory approach to the calculation of current through biological ion channels. IEEE Trans. Nanobiosci. 4(1), 81–93 (2005)
Flavell, A., Machen, M., Eisenberg, B., Kabre, J., Liu, C., Li, X.: A conservative finite difference scheme for Poisson–Nernst–Planck Equations. J. Comput. Eletron. 13(1), 235–249 (2014)
Gajewski, H., Gröger, K.: On the basic equations for carrier transport in semiconductors. J. Math. Anal. Appl. 113(1), 12–35 (1986)
Gao, H.D., He, D.D.: Linearized conservative finite element methods for the Nernst–Planck–Poisson equations. J. Sci. Comput. 72(3), 1269–1289 (2017)
Guignard, D., Nobile, F., Picasso, M.: A posteriori error estimation for elliptic partial differential equations with small uncertainties. Numer. Methods Partial Differ. Equ. 32(1), 175–212 (2016)
He, D., Pan, K.: An energy preserving finite difference scheme for the Poisson–Nernst–Planck system. Appl. Math. Comput. 287, 214–223 (2016)
Jerome, J.: Analysis of Charge Transport: A Mathematical Theory and Approximation of Semiconductor Models. Springer, New York (1996)
Lakkis, O., Makridakis, C.: Elliptic reconstruction, and a posteriori error estimates, for fully discrete linear parabolic problems. Math. Comput. 75(256), 1627–1658 (2006)
Liu, H.L., Wang, Z.M.: A free energy satisfying finite difference method for Poisson–Nernst–Planck equations. J. Comput. Phys. 268(2), 363–376 (2014)
Lu, B.Z., Holst, M.J., McCammond, J.A., Zhou, Y.C.: Poisson–Nernst–Planck equations for simulating biomolecular diffusion–reaction processes I: finite element solutions. J. Comput. Phys. 229(19), 6979–6994 (2010)
Lu, B.Z., Zhou, Y.C., Holst, M.J., McCammon, J.A.: Recent progress in numerical methods for the Poisson–Boltzmann equation in biophysical applications. Commun. Comput. Phys. 3(5), 973–1009 (2008)
Marcicki, J., Conlisk, A.T., Rizzoni, G.: Comparison of limiting descriptions of the electrical double layer using a simplified lithium-ion battery model. ECS Trans. 41(14), 9–21 (2012)
Mathur, S.R., Murthy, J.Y.: A multigrid method for the Poisson–Nernst–Planck equations. Int. J. Heat Mass Transf. 52(17), 4031–4039 (2009)
Nernst, W.: The electromotive effect of the ions. Z. Phys. Chem. 4, 129–181 (1889)
Nicaise, S., Soualem, N.: A posteriori error estimates for a nonconforming finite element discretization of the time-dependent Stokes problem II: Analysis of the spatial estimator. J. Numer. Math. 15(2), 137–162 (2007)
Picasso, M.: Adaptive finite elements for a linear parabolic problem. Comput. Methods Appl. Mech. Eng. 167(3–4), 223–237 (1998)
Picasso, M., Prachittham, V.: An adaptive algorithm for the Crank CNicolson scheme applied to a time-dependent convection Cdiffusion problem. J. Comput. Appl. Math. 233, 1139–1154 (2009)
Planck, M.: On the excitation of electricity and heat in electrolyte. Ann. Phys. 275(2), 161–186 (1890)
Richardson, G., King, J.R.: Time-dependent modelling and asymptotic analysis of electrochemical cells. J. Eng. Math. 59(3), 239–275 (2007)
Rocchia, W., Alexov, E., Honig, B.: Extending the applicability of the nonlinear Poisson–Boltzmann equation: multiple dielectric constants and multivalent ions. J. Phys. Chem. B 105(28), 6507–6514 (2001)
Shen, R.G., Shu, S., Yang, Y., Lu, B.Z.: A decoupling two-grid method for the time-dependent Poisson–Nernst–Planck equations. Numer. Anal. 83, 1613–1651 (2020)
Singer, A., Norbury, J.: A Poisson–Nernst–Planck model for biological ion channels-an asymptotic analysis in a three-dimensional narrow funnel. SIAM J. Appl. Math. 70(3), 949–968 (2009)
Sun, Y.Z., Sun, P.T., Zheng, B., Lin, G.: Error analysis of finite element method for Poisson–Nernst–Planck equations. J. Comput. Appl. Math. 301, 28–43 (2016)
Tu, B., Chen, M., Xie, Y.: A parallel finite element simulator for ion transport through three-dimensional ion channel systems. J Comput. Chem. 34(24), 2065–2078 (2013)
Verfürth, R.: A posteriori error estimates for finite element discretizations of the heat equation. Calcolo 40(3), 195–212 (2003)
Verfürth, R.: A Posteriori Error Estimation Techniques for Finite Element Methods. Oxford University Press (2013)
Xie, Y., Cheng, J., Lu, B.Z.: Parallel adaptive finite element algorithms for solving the coupled electro-diffusion equations. Mol. Based Math. Biol. 1, 90–108 (2013)
Yang, Y., Lu, B.Z.: An error analysis for the finite element approximation to the steady-state Poisson–Nernst–Planck equations. Adv. Appl. Math. Mech. 5(1), 113–130 (2013)
Yang, Y., Tang, M., Liu, C., Zhou, L.Q.: Superconvergent gradient recovery for nonlinear Poisson–Nernst–Planck equations with applications to the ion channel problem. Adv. Comput. Math. (2020). https://doi.org/10.1007/s10444-020-09819-6
Yang, Y., Zhou, A.H.: Local averaging based a posteriori finite element error control for quasilinear elliptic problems with application to electrical potential computation. Comput. Methods Appl. Mech. Eng. 196(1–3), 452–465 (2006)
Yan, N.N., Zhou, A.H.: Gradient recovery type a posteriori error estimates for finite element approximations on irregular meshes. Comput. Methods Appl. Mech. Eng. 190(32–33), 4289–4299 (2001)
Yan, N.N., Zhou, Z.J.: A posteriori error estimates of constrained optimal control problem governed by convection diffusion equations. Front. Math. China 3(3), 415–442 (2008)
Ye, X.: A posteriori error estimate for finite volume methods of the second order elliptic problem. Numer. Methods Partial Differ. Equ. 27, 1165–1178 (2011)
Acknowledgements
B. Z. Lu was supported by National Key Research and Development Program of Ministry of Science and Technology (Grant No. 2016YFB0201304), and China NSF (NSFC 11771435, 22073110). Y. Yang was supported by the China NSF (NSFC 12161026), Guangxi Natural Science Foundation (2020GXNSFAA159098, 2017GXNSFFA198012, 2020GXNSFBA238022), Guangxi Colleges and Universities Key Laboratory of Data Analysis and Computation open project fund and the Hunan Key Laboratory for Computation and Simulation in Science and Engineering, Xiangtan University. G. H. Ji was supported by the China NSF (NSFC 11671052, 11871105). W. W. Zhu was supported by Innovation Project of Guangxi Graduate Education (YCSW2019145).
Author information
Authors and Affiliations
Corresponding authors
Additional information
Publisher's Note
Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
Rights and permissions
About this article
Cite this article
Zhu, W., Yang, Y., Ji, G. et al. Residual Type a Posteriori Error Estimates for the Time-Dependent Poisson–Nernst–Planck Equations. J Sci Comput 90, 27 (2022). https://doi.org/10.1007/s10915-021-01702-w
Received:
Revised:
Accepted:
Published:
DOI: https://doi.org/10.1007/s10915-021-01702-w
Keywords
- Poisson–Nernst–Planck equations
- Residual type a posteriori error estimators
- Adaptive finite element method
- Backward Euler scheme