Skip to main content
Log in

Residual Type a Posteriori Error Estimates for the Time-Dependent Poisson–Nernst–Planck Equations

  • Published:
Journal of Scientific Computing Aims and scope Submit manuscript

Abstract

This paper investigates the residual type a posteriori error estimators for a fully discrete approximation to the solution of the time-dependent Poisson–Nernst–Planck equations, which are widely used to describe the electrodiffusion of ions in biomolecular solutions. The backward Euler scheme is used for the discretization in time and the continuous, piecewise linear triangular finite elements are applied to the space discretization. The main results consist in building error estimators and deriving computable upper and lower bounds on the error estimators. Some numerical experiments confirm the theoretical predictions and show the reliability and efficiency of the error estimators.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15

Similar content being viewed by others

Data Availability Statement

The datasets generated during and/or analysed during the current study are available from the corresponding author on reasonable request.

References

  1. Adams, R.A.: Sobolev Spaces. Academic Press, New York (1975)

    MATH  Google Scholar 

  2. Ainsworth, M., Oden, J.T.: A Posteriori Error Estimation in Finite Element Analysis. Wiley (2000)

  3. Akrivis, G., Makridakis, C., Nochetto, R.: A posteriori error estimates for the Crank–Nicolson method for parabolic equations. Math. Comput. 75(254), 511–531 (2005)

    MathSciNet  MATH  Google Scholar 

  4. Araya, R., Venegas, P.: An a posteriori error estimator for an unsteady advection–diffusion–reaction problem. Comput. Math. Appl. 66(12), 2456–2476 (2014)

    MathSciNet  MATH  Google Scholar 

  5. Babuška, I., Durán, R., Rodríguez, R.: Analysis of the efficiency of an a posteriori error estimator for linear triangular finite elements. SIAM J. Numer. Anal. 29(4), 947–964 (1992)

    MathSciNet  MATH  Google Scholar 

  6. Babuška, I., Rheinboldt, C.: Error estimates for adaptive finite element computation. SIAM J. Numer. Anal. 44(4), 75–102 (1978)

    MathSciNet  MATH  Google Scholar 

  7. Bänsch, E., Karakatsani, F., Makridakis, C.G.: A posteriori error estimates for fully discrete schemes for the time dependent Stokes problem. Calcolo 55, 19 (2018)

    MathSciNet  MATH  Google Scholar 

  8. Bergam, A., Bernardi, C., Mghazli, Z.: A posteriori analysis of the finite element discretization of some parabolic equations. Math. Comput. 74(251), 1117–1139 (2004)

    MathSciNet  MATH  Google Scholar 

  9. Bernardi, C., Verfürth, R.: A posteriori error analysis of the fully discretized time-dependent Stokes equations. SeMA J. 38(3), 437–455 (2004)

    MathSciNet  MATH  Google Scholar 

  10. Bessemoulin-chatard, M., Chainais-hillairet, C., Vignal, M.: Study of a fully implicit scheme for the drift-diffusion system. Asymptotic behavior in the quasi-neutral limit. SIAM J. Numer. Anal. 52(4), 1666–1691 (2013)

    MATH  Google Scholar 

  11. Bi, C., Wang, C., Lin, Y.: A posteriori error estimates of two-grid finite element methods for nonlinear elliptic problems. J. Sci. Comput. 74(1), 23–48 (2018)

    MathSciNet  MATH  Google Scholar 

  12. Bolintineanu, D.S., Sayyed-Ahmad, A., Davis, H.T., Kaznessis, Y.N.: Poisson–Nernst–Planck models of nonequilibrium ion electrodiffusion through a protegrin transmembrane pore. PLoS Comput. Biol. 5(1), e1000277 (2009)

    Google Scholar 

  13. Braess, D., Pillwein, V., Schöberl, J.: Equilibrated residual error estimates are \(p\)-robust. Comput. Methods Appl. Mech. Eng. 198, 1189–1197 (2009)

    MathSciNet  MATH  Google Scholar 

  14. Brenner, S.C., Scott, L.R.: The Mathematical Theory of Finite Element Methods. Springer, New York (1994)

    MATH  Google Scholar 

  15. Brezzi, F., Marini, L.D., Pietra, P.: Numerical simulation of semiconductor devices. Comput. Methods Appl. Mech. Eng. 75(1–3), 493–514 (1989)

    MathSciNet  MATH  Google Scholar 

  16. Cárdenas, A.E., Coalson, R.D., Kurnikova, M.G.: Three-dimensional Poisson–Nernst–Planck theory studies: influence of membrane electrostatics on gramicidin a channel conductancethe. Biophys. J. 79(1), 80–93 (2000)

    Google Scholar 

  17. Chainais-Hillairet, C., Peng, Y.J.: Finite volume approximation for degenerate drift-diffusion system in several space dimensions. Math. Models Methods Appl. Sci. 14(03), 461–481 (2004)

    MathSciNet  MATH  Google Scholar 

  18. Chen, Z.M., Ji, G.H.: Sharp \(L^1\) a posteriori error analysis for nonlinear Convection–Diffusion Problems. Math. Comput. 75(253), 43–71 (2006)

    MATH  Google Scholar 

  19. Chen, Z.M., Wu, H.J.: Selected Topics in Finite Element Methods. Science Press (2010)

  20. Ciucci, F., Lai, W.: Derivation of micro/macro lithium battery models from homogenization. Transp. Porous Med. 88(2), 249–270 (2011)

    MathSciNet  Google Scholar 

  21. Clément, P.: Approximation by finite element functions using local regularization. RAIRO Anal. Numer. 9, 7–84 (1975)

    MathSciNet  MATH  Google Scholar 

  22. Coalson, R.D., Kurnikova, M.G.: Poisson–Nernst–Planck theory approach to the calculation of current through biological ion channels. IEEE Trans. Nanobiosci. 4(1), 81–93 (2005)

    Google Scholar 

  23. Flavell, A., Machen, M., Eisenberg, B., Kabre, J., Liu, C., Li, X.: A conservative finite difference scheme for Poisson–Nernst–Planck Equations. J. Comput. Eletron. 13(1), 235–249 (2014)

    Google Scholar 

  24. Gajewski, H., Gröger, K.: On the basic equations for carrier transport in semiconductors. J. Math. Anal. Appl. 113(1), 12–35 (1986)

    MathSciNet  MATH  Google Scholar 

  25. Gao, H.D., He, D.D.: Linearized conservative finite element methods for the Nernst–Planck–Poisson equations. J. Sci. Comput. 72(3), 1269–1289 (2017)

    MathSciNet  MATH  Google Scholar 

  26. Guignard, D., Nobile, F., Picasso, M.: A posteriori error estimation for elliptic partial differential equations with small uncertainties. Numer. Methods Partial Differ. Equ. 32(1), 175–212 (2016)

    MathSciNet  MATH  Google Scholar 

  27. He, D., Pan, K.: An energy preserving finite difference scheme for the Poisson–Nernst–Planck system. Appl. Math. Comput. 287, 214–223 (2016)

    MathSciNet  MATH  Google Scholar 

  28. Jerome, J.: Analysis of Charge Transport: A Mathematical Theory and Approximation of Semiconductor Models. Springer, New York (1996)

    Google Scholar 

  29. Lakkis, O., Makridakis, C.: Elliptic reconstruction, and a posteriori error estimates, for fully discrete linear parabolic problems. Math. Comput. 75(256), 1627–1658 (2006)

    MathSciNet  MATH  Google Scholar 

  30. Liu, H.L., Wang, Z.M.: A free energy satisfying finite difference method for Poisson–Nernst–Planck equations. J. Comput. Phys. 268(2), 363–376 (2014)

    MathSciNet  MATH  Google Scholar 

  31. Lu, B.Z., Holst, M.J., McCammond, J.A., Zhou, Y.C.: Poisson–Nernst–Planck equations for simulating biomolecular diffusion–reaction processes I: finite element solutions. J. Comput. Phys. 229(19), 6979–6994 (2010)

    MathSciNet  MATH  Google Scholar 

  32. Lu, B.Z., Zhou, Y.C., Holst, M.J., McCammon, J.A.: Recent progress in numerical methods for the Poisson–Boltzmann equation in biophysical applications. Commun. Comput. Phys. 3(5), 973–1009 (2008)

    MATH  Google Scholar 

  33. Marcicki, J., Conlisk, A.T., Rizzoni, G.: Comparison of limiting descriptions of the electrical double layer using a simplified lithium-ion battery model. ECS Trans. 41(14), 9–21 (2012)

    Google Scholar 

  34. Mathur, S.R., Murthy, J.Y.: A multigrid method for the Poisson–Nernst–Planck equations. Int. J. Heat Mass Transf. 52(17), 4031–4039 (2009)

    MATH  Google Scholar 

  35. Nernst, W.: The electromotive effect of the ions. Z. Phys. Chem. 4, 129–181 (1889)

    Google Scholar 

  36. Nicaise, S., Soualem, N.: A posteriori error estimates for a nonconforming finite element discretization of the time-dependent Stokes problem II: Analysis of the spatial estimator. J. Numer. Math. 15(2), 137–162 (2007)

    MathSciNet  MATH  Google Scholar 

  37. Picasso, M.: Adaptive finite elements for a linear parabolic problem. Comput. Methods Appl. Mech. Eng. 167(3–4), 223–237 (1998)

    MathSciNet  MATH  Google Scholar 

  38. Picasso, M., Prachittham, V.: An adaptive algorithm for the Crank CNicolson scheme applied to a time-dependent convection Cdiffusion problem. J. Comput. Appl. Math. 233, 1139–1154 (2009)

    MathSciNet  MATH  Google Scholar 

  39. Planck, M.: On the excitation of electricity and heat in electrolyte. Ann. Phys. 275(2), 161–186 (1890)

    MathSciNet  Google Scholar 

  40. Richardson, G., King, J.R.: Time-dependent modelling and asymptotic analysis of electrochemical cells. J. Eng. Math. 59(3), 239–275 (2007)

    MathSciNet  MATH  Google Scholar 

  41. Rocchia, W., Alexov, E., Honig, B.: Extending the applicability of the nonlinear Poisson–Boltzmann equation: multiple dielectric constants and multivalent ions. J. Phys. Chem. B 105(28), 6507–6514 (2001)

    Google Scholar 

  42. Shen, R.G., Shu, S., Yang, Y., Lu, B.Z.: A decoupling two-grid method for the time-dependent Poisson–Nernst–Planck equations. Numer. Anal. 83, 1613–1651 (2020)

    MathSciNet  MATH  Google Scholar 

  43. Singer, A., Norbury, J.: A Poisson–Nernst–Planck model for biological ion channels-an asymptotic analysis in a three-dimensional narrow funnel. SIAM J. Appl. Math. 70(3), 949–968 (2009)

    MathSciNet  MATH  Google Scholar 

  44. Sun, Y.Z., Sun, P.T., Zheng, B., Lin, G.: Error analysis of finite element method for Poisson–Nernst–Planck equations. J. Comput. Appl. Math. 301, 28–43 (2016)

    MathSciNet  MATH  Google Scholar 

  45. Tu, B., Chen, M., Xie, Y.: A parallel finite element simulator for ion transport through three-dimensional ion channel systems. J Comput. Chem. 34(24), 2065–2078 (2013)

    Google Scholar 

  46. Verfürth, R.: A posteriori error estimates for finite element discretizations of the heat equation. Calcolo 40(3), 195–212 (2003)

    MathSciNet  MATH  Google Scholar 

  47. Verfürth, R.: A Posteriori Error Estimation Techniques for Finite Element Methods. Oxford University Press (2013)

  48. Xie, Y., Cheng, J., Lu, B.Z.: Parallel adaptive finite element algorithms for solving the coupled electro-diffusion equations. Mol. Based Math. Biol. 1, 90–108 (2013)

    MATH  Google Scholar 

  49. Yang, Y., Lu, B.Z.: An error analysis for the finite element approximation to the steady-state Poisson–Nernst–Planck equations. Adv. Appl. Math. Mech. 5(1), 113–130 (2013)

    MathSciNet  MATH  Google Scholar 

  50. Yang, Y., Tang, M., Liu, C., Zhou, L.Q.: Superconvergent gradient recovery for nonlinear Poisson–Nernst–Planck equations with applications to the ion channel problem. Adv. Comput. Math. (2020). https://doi.org/10.1007/s10444-020-09819-6

    Article  MathSciNet  MATH  Google Scholar 

  51. Yang, Y., Zhou, A.H.: Local averaging based a posteriori finite element error control for quasilinear elliptic problems with application to electrical potential computation. Comput. Methods Appl. Mech. Eng. 196(1–3), 452–465 (2006)

    MathSciNet  MATH  Google Scholar 

  52. Yan, N.N., Zhou, A.H.: Gradient recovery type a posteriori error estimates for finite element approximations on irregular meshes. Comput. Methods Appl. Mech. Eng. 190(32–33), 4289–4299 (2001)

    MathSciNet  MATH  Google Scholar 

  53. Yan, N.N., Zhou, Z.J.: A posteriori error estimates of constrained optimal control problem governed by convection diffusion equations. Front. Math. China 3(3), 415–442 (2008)

    MathSciNet  MATH  Google Scholar 

  54. Ye, X.: A posteriori error estimate for finite volume methods of the second order elliptic problem. Numer. Methods Partial Differ. Equ. 27, 1165–1178 (2011)

    MATH  Google Scholar 

Download references

Acknowledgements

B. Z. Lu was supported by National Key Research and Development Program of Ministry of Science and Technology (Grant No. 2016YFB0201304), and China NSF (NSFC 11771435, 22073110). Y. Yang was supported by the China NSF (NSFC 12161026), Guangxi Natural Science Foundation (2020GXNSFAA159098, 2017GXNSFFA198012, 2020GXNSFBA238022), Guangxi Colleges and Universities Key Laboratory of Data Analysis and Computation open project fund and the Hunan Key Laboratory for Computation and Simulation in Science and Engineering, Xiangtan University. G. H. Ji was supported by the China NSF (NSFC 11671052, 11871105). W. W. Zhu was supported by Innovation Project of Guangxi Graduate Education (YCSW2019145).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Ying Yang or Guanghua Ji.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhu, W., Yang, Y., Ji, G. et al. Residual Type a Posteriori Error Estimates for the Time-Dependent Poisson–Nernst–Planck Equations. J Sci Comput 90, 27 (2022). https://doi.org/10.1007/s10915-021-01702-w

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10915-021-01702-w

Keywords

Mathematics Subject Classification