Skip to main content
Log in

A Linear Finite Difference Scheme for the Two-Dimensional Nonlinear Schrödinger Equation with Fractional Laplacian

  • Published:
Journal of Scientific Computing Aims and scope Submit manuscript

Abstract

In this paper, we propose a conservative three-layer linearized difference scheme for the two-dimensional nonlinear Schrödinger equation with fractional Laplacian. The difference scheme can be strictly proved to be uniquely solvable, conservation of mass and energy in the discrete sense. Furthermore, it is shown that the difference scheme is unconditionally convergent and stable under \(l^{\infty }\)-norm by discrete energy method. The convergence order is \(\mathcal {O}(\tau ^2+h^2)\) with time step \(\tau \) and mesh size h. Numerical examples are given to demonstrate the theoretical results.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Amore, P., Fernandez, F.M., Hofmann, C.P., Saenz, R.A.: Collocation method for fractional quantum mechanics. J. Math. Phys. 51, 122101 (2010)

    Article  MathSciNet  Google Scholar 

  2. Asadzadeh, M., Standar, C.: Approximating the nonlinear Schrödinger equation by a two level linearly implicit finite element method. J. Math. Sci. 239, 233–247 (2019). https://doi.org/10.1007/s10958-019-04301-1

    Article  MathSciNet  MATH  Google Scholar 

  3. Bhrawy, A.H., Zaky, M.A.: An improved collocation method for multi-dimensional space-time variable-order fractional Schrödinger equations. Appl. Numer. Math. 111, 197–218 (2017)

    Article  MathSciNet  Google Scholar 

  4. Cheng, B.R., Wang, D.L., Yang, W.: Energy preserving relaxation method for space-fractional nonlinear Schrödinger equation. Appl. Numer. Math. 152, 480–498 (2020)

    Article  MathSciNet  Google Scholar 

  5. Defterli, O., D’Elia, M., Du, Q., Gunzburger, M., Lehoucq, R., Meerschaert, M.: Fractional diffusion on bounded domains: Fractional Calculus and Applied. Analysis 18, 342–360 (2015)

  6. Duo, S.W., Zhang, Y.Z.: Mass-conservative Fourier spectral methods for solving the fractional nonlinear Schrödinger equation. Comput. Math. Appl. 71, 2257–2271 (2016)

    Article  MathSciNet  Google Scholar 

  7. Felmer, P., Quaas, A., Tan, J.: Positive solutions of the nonlinear Schrödinger equation with the fractional Laplacian. Proc. R. Soc. Edinb.: Sect. A Math. 142, 1237–1262 (2012)

    Article  Google Scholar 

  8. Guo, B.L., Huo, Z.H.: Global well-posedness for the fractional nonlinear Schrödinger equation. Commun. Partial Differ. Equ. 36, 247–255 (2011)

    Article  Google Scholar 

  9. Guo, B.L., Huo, Z.H.: Well-posedness for the nonlinear fractional Schrödinger equation and inviscid limit behavior of solution for the fractional ginzburg-landau equation. Fractional Calculus Appl. Anal. 16, 226–242 (2013)

    Article  MathSciNet  Google Scholar 

  10. Guo, B.L., Han, Y.Q., Xin, J.: Existence of the global smooth solution to the period boundary value problem of fractional nonlinear Schrödinger equation. Appl. Math. Comput. 204, 468–477 (2008)

    MathSciNet  MATH  Google Scholar 

  11. Guo, X.Y., Jiang, X.Y.: Some physical applications of fractional Schrödinger equation. J. Math. Phys. 47, 082104 (2006)

    Article  MathSciNet  Google Scholar 

  12. Hao, Z.P., Zhang, Z.Q., Du, R.: Fractional centered difference scheme for high-dimensional integral fractional Laplacian. J. Comput. Phys. 424, 109851 (2020)

    Article  MathSciNet  Google Scholar 

  13. Hu, Y., Kallianpur, G.: Schrödinger equations with fractional Laplacians. Appl. Math. Optim. 42, 281–290 (2000)

    Article  MathSciNet  Google Scholar 

  14. John, R.: Elliptic Operators, Topology, and Asymptotic Methods. Chapman and Hall/CRC, London (1999)

    Google Scholar 

  15. Landkof, N.S.: Foundations of Modern Potential Theory, vol. 180. Springer-Verlag, Berlin Heidelberg (1972)

    Book  Google Scholar 

  16. Laskin, N.: Fractional quantum mechanics. Phys. Rev. E 62, 3135–3145 (2000)

    Article  Google Scholar 

  17. Laskin, N.: Fractional quantum mechanics and lévy path integrals. Phys. Lett. A 268, 298–305 (2000)

    Article  MathSciNet  Google Scholar 

  18. Li, M., Gu, X.M., Huang, C.M., Fei, M.F., Zhang, G.Y.: A fast linearized conservative finite element method for the strongly coupled nonlinear fractional Schrödinger equations. J. Comput. Phys. 358, 256–282 (2018)

    Article  MathSciNet  Google Scholar 

  19. Li, M., Huang, C.M., Wang, P.D.: Galerkin finite element method for nonlinear fractional Schrödinger equations. Numerical Algorithms 74, 499–525 (2017)

    Article  MathSciNet  Google Scholar 

  20. Li, Y., Zhao, D., Wang, Q.X.: Ground state solution and nodal solution for fractional nonlinear Schrödinger equation with indefinite potential. J. Math. Phys. 60, 041501 (2019)

    Article  MathSciNet  Google Scholar 

  21. Liao, H.L., Sun, Z.Z., Shi, H.S.: Maximum norm error analysis of explicit schemes for two-dimensional nonlinear Schrödinger equations. Scientia Sinica (Mathematica) 40, 827–842 (2010). (in chinese)

    Article  Google Scholar 

  22. Longhi, S.: Fractional Schrödinger equation in optics. Opt. Lett. 40, 1117–1120 (2015)

    Article  Google Scholar 

  23. Pan, K.J., Jin, X.L., He, D.D., Zhang, Q.F.: Optimal pointwise error estimate for the numerical solutions of two-dimensional space fractional nonlinear schrödinger equation. arXiv: Numerical Analysis (2019)

  24. Pinsker, F., Bao, W., Zhang, Y., Ohadi, H., Dreismann, A., Baumberg, J.J.: Fractional quantum mechanics in polariton condensates with velocity-dependent mass. Phys. Rev. B 92, 195310 (2015)

    Article  Google Scholar 

  25. Samko, S., Kilbas, A., Maricev, O.: Fractional Integrals and Derivations and Some Applications. Gordon and Breach Science, Abingdon (1993)

    Google Scholar 

  26. Secchi, S.: Ground state solutions for nonlinear fractional Schrödinger equations in \(r^n\). J. Math. Phys. 54, 031501 (2013)

    Article  MathSciNet  Google Scholar 

  27. Sun, Z.Z.: Numerical Methods of the Partial Differential Equations. Science Press, China (2012)

    Google Scholar 

  28. Sun, Z.Z.: Finite Difference Method for Nonlinear Development Equation. Science Press, China (2018)

    Google Scholar 

  29. Sun, Z.Z., Zhao, D.D.: On the \(l^\infty \) convergence of a difference scheme for coupled nonlinear Schrödinger equations. Comput. Math. Appl. 59, 3286–3300 (2010)

    Article  MathSciNet  Google Scholar 

  30. Tian, B., Shan, W.B., Zhang, C.Y., Wei, G.M., Gao, Y.T.: Transformations for a generalized variable-coefficient nonlinear Schrödinger model from plasma physics, arterial mechanics and optical fibers with symbolic computation. Phys. Condens. Matter 47, 329–332 (2005)

    Google Scholar 

  31. Wang, D.L., Xiao, A.G., Yang, W.: Crank–Nicolson difference scheme for the coupled nonlinear Schrödinger equations with the Riesz space fractional derivative. J. Comput. Phys. 242, 670–681 (2013)

    Article  MathSciNet  Google Scholar 

  32. Wang, D.L., Xiao, A.G., Yang, W.: A linearly implicit conservative difference scheme for the space fractional coupled nonlinear Schrödinger equations. J. Comput. Phys. 272, 644–655 (2014)

    Article  MathSciNet  Google Scholar 

  33. Wang, P.D., Huang, C.M.: A conservative linearized difference scheme for the nonlinear fractional Schrödinger equation. Numerical Algorithms 69, 625–641 (2015)

    Article  MathSciNet  Google Scholar 

  34. Wang, P.D., Huang, C.M.: An energy conservative difference scheme for the nonlinear fractional Schrödinger equations. J. Comput. Phys. 293, 238–251 (2015)

    Article  MathSciNet  Google Scholar 

  35. Wang, P.D., Huang, C.M.: Split-step alternating direction implicit difference scheme for the fractional Schrödinger equation in two dimensions. Comput. Math. Appl. 71, 1114–1128 (2016)

    Article  MathSciNet  Google Scholar 

  36. Wang, Y., Mei, L.Q., Li, Q., Bu, L.L.: Split-step spectral Galerkin method for the two-dimensional nonlinear space-fractional Schrödinger equation. Appl. Numer. Math. 136, 257–278 (2019)

    Article  MathSciNet  Google Scholar 

  37. Weinan, E., Ma, C., Wu, L.: Barron spaces and the compositional function spaces for neural network models. arXiv:org/abs/1906.08039 (2019)

  38. Xu, J.: Finite neuron method and convergence analysis. Commun. Comput. Phys. 28, 1707–1745 (2020)

    Article  MathSciNet  Google Scholar 

  39. Xu, Y., Shu, C.: Local discontinuous Galerkin methods for nonlinear Schrödinger equations. J. Comput. Phys. 205, 72–97 (2005)

    Article  MathSciNet  Google Scholar 

  40. Zhai, S.Y., Wang, D.L., Weng, Z., Zhao, X.: Error analysis and numerical simulations of strang splitting method for space fractional nonlinear Schrödinger equation. J. Sci. Comput. 81, 965–989 (2019)

    Article  MathSciNet  Google Scholar 

  41. Zhang, F., Pérez-García, V.M., Vázquez, L.: Numerical simulation of nonlinear Schrödinger systems: a new conservative scheme. Appl. Math. Comput. 71, 165–177 (1995)

    MathSciNet  MATH  Google Scholar 

  42. Zhang, Q.F. and Hesthaven, J., Sun, Z.Z., Ren, Y.Z.: Pointwise error estimate in difference setting for the two-dimensional nonlinear fractional complex Ginzburg–Landau equation. https://www.researchgate.net/publication/344102816 (2020)

  43. Zhang, R.P., Zhang, Y.T., Wang, Z., Chen, B., Zhang, Y.: A conservative numerical method for the fractional nonlinear Schrödinger equation in two dimensions. Science China (Mathematics) 62, 1997–2014 (2019)

  44. Zhao, X., Sun, Z.Z., Hao, Z.P.: A fourth-order compact adi scheme for two-dimensional nonlinear space fractional Schrödinger equation. SIAM J. Sci. Comput. 36, A2865–A2886 (2014)

    Article  Google Scholar 

Download references

Acknowledgements

This work is financially supported by the National Natural Science Foundation of China (Grants No. 11602057) and Qinglan Project.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rui Du.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendix A

Appendix A

For the coefficients of the discrete fractional Laplacian,

$$\begin{aligned} a_{j,k}^{(\alpha )} =\frac{1}{(2\pi )^2}\int _{[-\pi ,\pi ]^2}{\left( 4\sin (\frac{\eta _1}{2})^2+4\sin (\frac{\eta _2}{2})^2\right) ^\frac{\alpha }{2}\mathrm {e}^{-{\mathbf{i}}(j\eta _1+k\eta _2)}\mathrm {d}\eta }, \end{aligned}$$

we denote

$$\begin{aligned} \varPsi (\eta ) = \left( 4\sin (\frac{\eta _1}{2})^2+4\sin (\frac{\eta _2}{2})^2\right) ^\frac{\alpha }{2}. \end{aligned}$$

And we denote the \(s'\)th Sobolev space

$$\begin{aligned} W^{s}( {\mathcal {T} })=\left\{ u: \forall |\beta | \leqslant s, D^{\beta } u \in L^{2}({\mathcal {T} })\right\} , \end{aligned}$$

where \(\mathcal {T}=[-\pi , \pi ]^2\) . Since \(\varPsi (\eta )\in W^s({\mathcal {T} })\), here \(s= 1+\alpha + \epsilon \) for any small \(\epsilon >0\). It can be seen from book [14] on page 72, there is

$$\begin{aligned} \sum _{j,k}|a_{j,k}^{(\alpha )}|^2(1+(j^2+k^2))^{{s(\alpha )}}<\infty . \end{aligned}$$

For bigger jk, we have

$$\begin{aligned} |a_{j,k}^{(\alpha )}|\le \frac{1}{(1+(j^2+k^2))^{{\frac{s(\alpha )}{2}}}}. \end{aligned}$$

Assume \(u\in \mathcal {B}^{2+\alpha }\). Denote

$$\begin{aligned} u^L(x,y)=\left\{ \begin{array}{rcl} u(x,y), &{} &{} (x,y)\in (-L,L)^2\\ 0, &{} &{} (x,y)\in \mathbb {R}^2\backslash (-L,L)^2 \end{array}. \right. \end{aligned}$$

We have

$$\begin{aligned} (-\varDelta )^{\frac{\alpha }{2}}u-Au^L=(-\varDelta )^{\frac{\alpha }{2}}u -(-\varDelta _h)^{\frac{\alpha }{2}}u+(-\varDelta _h)^{\frac{\alpha }{2}}u-Au^L. \end{aligned}$$

From Lemma 2.1, we have

$$\begin{aligned} |(-\varDelta )^{\frac{\alpha }{2}}u-(-\varDelta _h)^{\frac{\alpha }{2}}u| \le C_0h^2\int _{\mathbb {R}^2}\left( 1+|\eta |\right) ^{\alpha +2}|u^{*}(\eta _1,\eta _2)|\mathrm {d}\eta _1\mathrm {d}\eta _2. \end{aligned}$$

And

$$\begin{aligned}&(-\varDelta _h)^{\frac{\alpha }{2}}u(x_{i_1},y_{i_2})-Au^L(x_{i_1},y_{i_2})\nonumber \\&\quad =h^{-\alpha }\sum _{j,k\in \mathbb {Z}^2}a_{j,k}^{(\alpha )}u(x_{i_1}+jh,y_{i_2}+kh)-h^{-\alpha }\sum _{j,k\in \mathbb {Z}^2}a_{j,k}^{(\alpha )}u^{L}(x_{i_1}+jh,y_{i_2}+kh)\nonumber \\&\quad =h^{-\alpha }\sum _{{j,k}\in \mathbb {Z}^2}a_{j,k}^{(\alpha )}(u(x_{i_1}+jh,y_{i_2}+kh) -u^L(x_{i_1}+jh,y_{i_2}+kh))\nonumber \\&\quad =h^{-\alpha }\sum _{{j}=-\infty }^{+{\infty }}\sum _{{k} =-\infty }^{-{i_2}}a_{j,k}^{(\alpha )}u(x_{i_1}+{j}h,y_{i_2}+kh) +h^{-\alpha }\sum _{{j}=-\infty }^{+\infty }\sum _{{k} =M-{i_2}}^{+{\infty }}a_{j,k}^{(\alpha )}u(x_{i_1}+jh,y_{i_2}+kh)\nonumber \\&\qquad +h^{-\alpha }\sum _{{j}=-\infty }^{-{i_1}}\sum _{{k} =-{i_2}}^{M-{i_2}}a_{j,k}^{(\alpha )}u(x_{i_1}+{j}h,y_{i_2}+kh)+h^{-\alpha }\sum _{{j} =M-{i_1}}^{+\infty }\sum _{{k}=-{i_2}}^{M-{i_2}}a_{j,k}^{(\alpha )}u(x_{i_1} +jh,y_{i_2}+kh)\nonumber \\&\quad =: {i}+{ii} +{iii} +{iv} \end{aligned}$$
(A.1)

Assume u(xy) is the algebraic decay function, i.e. \(u(x,y) = \frac{1}{(x^2+y^2)^{\delta }}, (\delta >0)\). For the first term \({i}\) of Eq. (A.1), we have

$$\begin{aligned} {i}=&h^{-\alpha }\sum _{{j} =-\infty }^{+{\infty }}\sum _{{k}=-\infty }^{-{i_2}}a_{j,k}^{(\alpha )}u(x_{i_1} +{j}h,y_{i_2}+kh)\nonumber \\ \le&h^{-\alpha }\sum _{{j}=-\infty }^{+{\infty }}\sum _{{k}=-\infty }^{-{i_2}} \frac{1}{(1+({j}^{2}+{k}^2))^{{\frac{s(\alpha )}{2}}}}u(x_{i_1} +{j}h,y_{i_2}+kh)\nonumber \\ \le&h^{-\alpha }\frac{1}{L^{2\delta }}\sum _{{j}=-\infty }^{+{\infty }}\sum _{{k} =-\infty }^{-{i_2}}\frac{1}{(1+({j}^{2}+{k}^2))^{{\frac{s(\alpha )}{2}}}}. \end{aligned}$$
(A.2)

There is a constant C, which satisfies

$$\begin{aligned} \sum _{{j}=-\infty }^{+{\infty }}\sum _{{k}=-\infty }^{-{i_2}} \frac{1}{(1+({j}^{2}+{k}^2))^{{\frac{s(\alpha )}{2}}}}\le&C \sum _{{j}=1}^{+{\infty }}\sum _{{k}=1}^{+{\infty }} \frac{1}{(1+({j}^{2}+{k}^2))^{{\frac{s(\alpha )}{2}}}}\\ \le&C\int _1^{+\infty }\int _1^{+\infty } \frac{1}{(1+({x}^{2}+{y}^2))^{{\frac{s(\alpha )}{2}}}}dxdy\\ =&C\int _0^{2\pi }\int _1^{+\infty }\frac{1}{(1+|r|{{^2}})^{{\frac{s(\alpha )}{2}}}}rdrd\theta \\ =&2\pi C \int _1^{+\infty }\frac{1}{(1+|r|{{^2}})^{{\frac{s(\alpha )}{2}}}}rdr\\ \le&2\pi C\int _1^{+\infty }\frac{1}{|r|^{{s(\alpha )}-1}}dr\\ =&{\frac{2\pi C}{{s(\alpha )}-2}}. \end{aligned}$$

Since \({s(\alpha )}>2\), for Eq. (A.2), we have

$$\begin{aligned} {i}\le {\frac{2\pi C}{{s(\alpha )}-2}}h^{-\alpha }L^{-2\delta }. \end{aligned}$$

For the remaining items in Eq. (A.1), the same inequality can be obtained. Now denote \(L=h^{-\beta }\). Therefore, we have

$$\begin{aligned} |(-\varDelta _h)^{\frac{\alpha }{2}}u(x_{i_1},y_{i_2})-Au^L(x_{i_1},y_{i_2})|&\le {\frac{8\pi C}{{s(\alpha )}-2}}h^{-\alpha }L^{-2\delta }\\&\le {\frac{8\pi C}{{s(\alpha )}-2}}h^{-\alpha +2\delta \beta }. \end{aligned}$$

When \(\delta \beta >1+\alpha /2\), we have

$$\begin{aligned} |(-\varDelta _h)^{\frac{\alpha }{2}}u-Au^L | \le {\frac{8\pi C}{{s(\alpha )}-2}}h^{2}. \end{aligned}$$

Therefore, when \(\delta \beta \ge 1+\alpha /2\), i.e, the solution u decay enough fast, we can have

$$\begin{aligned} | (-\varDelta )^{\frac{\alpha }{2}} u-Au^L | \le h^2 \left( C_0\int _{\mathbb {R}^2}\left( 1+|\eta |\right) ^{\alpha +2}|u^{*}(\eta _1,\eta _2)|\mathrm {d}\eta _1\mathrm {d}\eta _2+{\frac{8\pi C}{{s(\alpha )}-2}} \right) .\end{aligned}$$

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, Y., Hao, Z. & Du, R. A Linear Finite Difference Scheme for the Two-Dimensional Nonlinear Schrödinger Equation with Fractional Laplacian. J Sci Comput 90, 24 (2022). https://doi.org/10.1007/s10915-021-01703-9

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10915-021-01703-9

Keywords