Skip to main content
Log in

An Efficient DWR-Type a Posteriori Error Bound of SDFEM for Singularly Perturbed Convection–Diffusion PDEs

  • Published:
Journal of Scientific Computing Aims and scope Submit manuscript

Abstract

This article deals with the residual-based a posteriori error estimation in the standard energy norm for the streamline-diffusion finite element method (SDFEM) for singularly perturbed convection–diffusion equations. The well-known dual-weighted residual (DWR) technique has been adopted to elevate the accuracy of the error estimator. Our main contribution is finding an efficient computable DWR-type robust residual-based a posteriori error bound for the SDFEM. The local lower error bound has also been provided. An adaptive mesh refinement algorithm has been addressed and lastly, some numerical experiments are carried out to justify the theoretical proofs.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Ainsworth, M., Vejchodský, T.: A simple approach to reliable and robust a posteriori error estimation for singularly perturbed problems. Comput. Methods Appl. Mech. Eng. 353, 373–390 (2019)

    Article  MathSciNet  Google Scholar 

  2. Babuška, I., Rheinboldt, W.C.: Error estimates for adaptive finite element computations. SIAM J. Numer. Anal. 15, 736–754 (1978)

    Article  MathSciNet  Google Scholar 

  3. Babuška, I., Rheinboldt, W.C.: A posteriori error estimates for the finite element method. Int. J. Numer. Methods Eng. 12, 1597–1615 (1978)

    Article  Google Scholar 

  4. Becker, R., Rannacher, R.: An optimal control approach to a posteriori error estimation in finite element methods. Acta Numer. 10, 1–102 (2001). https://doi.org/10.1017/S0962492901000010

    Article  MathSciNet  MATH  Google Scholar 

  5. Becker, R., Innerberger, M., Praetorius, D.: Optimal convergence rates for goal-oriented FEM with quadratic goal functional. Comput. Methods Appl. Math. 21(2), 267–288 (2021)

    Article  MathSciNet  Google Scholar 

  6. Brenner, S., Scott, R.: The Mathematical Theory of Finite Element Methods, Texts in Applied Mathematics, 3rd edn. Springer, New York (2008)

    Google Scholar 

  7. Bruchhäuser, M.P., Schwegler, K., Bause, M.: Dual weighted residual based error control for nonstationary convection-dominated equations: potential or ballast? In: Barrenechea, G., Mackenzie, J. (eds.) Boundary and Interior Layers, Computational and Asymptotic Methods BAIL. Lecture Notes in Computational Science and Engineering, vol. 135. Springer, Cham (2018)

    MATH  Google Scholar 

  8. Dörfler, W.: A convergent adaptive algorithm for Poisson’s equation. SIAM J. Numer. Anal. 33(3), 1106–1124 (1996)

  9. Erath, C., Praetorius, D.: Optimal adaptivity for the SUPG finite element method. Comput. Methods Appl. Mech. Eng. 353, 308–327 (2019)

    Article  MathSciNet  Google Scholar 

  10. Endtmayer, B., Langer, U., Wick, T.: Two-side a posteriori error estimates for the dual-weighted residual method. SIAM J. Sci. Comput. 42(1), 371–394 (2020)

    Article  MathSciNet  Google Scholar 

  11. Endtmayer, B., Langer, U., Wick, T.: Reliability and efficiency of DWR-type a posteriori error estimates with smart sensitivity weight recovering. Comput. Methods Appl. Math. 21(2), 351–371 (2021)

    Article  MathSciNet  Google Scholar 

  12. Funken, S., Praetorius, D., Wissgott, P.: Efficient implementation of adaptive P1-FEM in Matlab. SIAM J. Numer. Anal. 11(4), 460–490 (2011)

    MathSciNet  MATH  Google Scholar 

  13. Hughes, T.J.R., Brooks, A.: A multidimensional upwind scheme with no crosswind diffusion. In: Finite Element Methods for Convection Dominated Flows, ASME, New York, AMD, vol. 34, pp. 19–35 (1979)

  14. John, V., Knobloch, P.: On spurious oscillations at layers diminishing (SOLD) methods for convection–diffusion equations: part I—a review. Comput. Methods Appl. Mech. Eng. 196, 2197–2215 (2007)

    Article  Google Scholar 

  15. John, V., Novo, J.: A robust SUPG norm a posteriori error estimator for stationary convection–diffusion equations. Comput. Methods Appl. Mech. Eng. 255, 289–305 (2013)

    Article  MathSciNet  Google Scholar 

  16. Pietro, D. A. Di., Ern, A.: Mathematical Aspects of Discontinuous Galerkin Methods. Springer, Berlin (Mathématiques et Applications) (2010)

  17. Roos, H.G., Stynes, M., Tobiska, L.: Robust Numerical Methods for Singularly Perturbed Differential Equations. Springer, Berlin (2008)

    MATH  Google Scholar 

  18. Tobiska, L., Verfürth, R.: Robust a posteriori error estimates for stabilized finite element methods. IMA J. Numer. Anal. 35, 1652–1671 (2015)

    Article  MathSciNet  Google Scholar 

  19. Verfürth, R.: A posteriori error estimation and adaptive mesh-refinement techniques. J. Comput. Appl. Math. 50(1–3), 67–83 (1994)

    Article  MathSciNet  Google Scholar 

  20. Verfürth, R.: A posteriori error estimators for convection–diffusion equations. Numer. Math. 80(4), 641–663 (1998)

    Article  MathSciNet  Google Scholar 

  21. Verfürth, R.: Robust a posteriori error estimates for stationary convection–diffusion equations. SIAM J. Numer. Anal. 43(4), 1766–1782 (2005)

    Article  MathSciNet  Google Scholar 

  22. Verfürth, R.: A Posteriori Error Estimation Techniques for Finite Element Methods. Oxford University Press, Oxford (2013)

    Book  Google Scholar 

Download references

Acknowledgements

The authors wish to acknowledge the referees for their valuable comments and suggestions, which helped to improve the presentation.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. Natesan.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Avijit, D., Natesan, S. An Efficient DWR-Type a Posteriori Error Bound of SDFEM for Singularly Perturbed Convection–Diffusion PDEs. J Sci Comput 90, 73 (2022). https://doi.org/10.1007/s10915-021-01749-9

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10915-021-01749-9

Keywords

Mathematics Subject Classification

Navigation