Skip to main content
Log in

A Nonconforming Virtual Element Method for a Fourth-order Hemivariational Inequality in Kirchhoff Plate Problem

  • Published:
Journal of Scientific Computing Aims and scope Submit manuscript

Abstract

This paper is devoted to a fourth-order hemivariational inequality for a Kirchhoff plate problem. A solution existence and uniqueness result is proved for the hemivariational inequality through the analysis of a corresponding minimization problem. A nonconforming virtual element method is developed to solve the hemivariational inequality. An optimal order error estimate in a broken \(H^2\)-norm is derived for the virtual element solutions under appropriate solution regularity assumptions. The discrete problem can be formulated as an optimization problem for a difference of two convex (DC) functions and a convergent algorithm is used to solve it. Computer simulation results on a numerical example are reported, providing numerical convergence orders that match the theoretical prediction.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Data Availability

The datasets generated during and/or analysed during the current study are available from the corresponding author on reasonable request.

Code Availability

The codes during the current study are available from the corresponding author on reasonable request.

References

  1. Ahmad, B., Alsaedi, A., Brezzi, F., Marini, L.D., Russo, A.: Equivalent projectors for virtual element methods. Comput. Math. Appl. 66, 376–391 (2013)

  2. Antonietti, P.F., Manzini, G., Verani, M.: The fully nonconforming virtual element method for biharmonic problems. Math. Models Methods Appl. Sci. 28, 387–407 (2018)

    Article  MathSciNet  Google Scholar 

  3. Antonietti, P.F., Manzini, G., Verani, M.: The conforming virtual element method for polyharmonic problems. Comput. Math. Appl. 79, 2021–2034 (2020)

    Article  MathSciNet  Google Scholar 

  4. Atkinson, K., Han, W.: Theoretical numerical analysis: a functional analysis framework, 3rd edn. Springer, New York (2009)

    MATH  Google Scholar 

  5. Ayuso de Dios, B., Lipnikov, K., Manzini, G.: The nonconforming virtual element method. ESAIM Math. Model. Numer. Anal. 50, 879–904 (2016)

  6. Beirão Da Veiga, L., Brezzi, F., Cangiani, A., Manzini, G., et al.: Basic principles of virtual element methods. Maths. Model. Method. Appl. Sci. 23, 199–214 (2013)

    Article  MathSciNet  Google Scholar 

  7. Beirão Da Veiga, L., Brezzi, F., Marini, L.D.: Virtual elements for linear elasticity problems. SIAM J Numer Anal. 51, 794–812 (2013)

    Article  MathSciNet  Google Scholar 

  8. Beirão Da Veiga, L., Brezzi, F., Marini, L.D., Russo, A.: The hitchhiker’s guide to the virtual element method. Math. Models Methods Appl. Sci. 24, 1541–1573 (2014)

  9. Beirão Da Veiga, L., Lovadina, C., Russo, A.: Stability analysis for the virtual element method. Maths Models Methods Appl. Sci. 27, 2557–2594 (2017)

  10. Brenner, S.C., Guan, Q., Sung, L.: Some estimates for virtual element methods. Comput. Methods Appl. Math. 17, 553–574 (2017)

    Article  MathSciNet  Google Scholar 

  11. Brenner, S.C., Scott, L.R.: The Mathematical Theory of Finite Element Methods, 3rd edn. Springer, New York (2008)

    Book  Google Scholar 

  12. Brenner, S.C., Sung, L.: Virtual element methods on meshes with small edges or faces. Math. Models Methods Appl. Sci. 28, 1291–1336 (2018)

    Article  MathSciNet  Google Scholar 

  13. Brenner, S.C., Wang, K., Zhao, J.: Poincaré-Friedrichs inequalities for piecewise \(H^2\) functions. Numer. Funct. Anal. Optim. 25, 463–478 (2004)

  14. Brezzi, F., Marini, L.D.: Virtual element methods for plate bending problems. Comput. Methods Appl. Mech. Engrg. 253, 455–462 (2013)

    Article  MathSciNet  Google Scholar 

  15. Cangiani, A., Manzini, G., Sutton, O.J.: Conforming and nonconforming virtual element methods for elliptic problems. IMA J. Numer. Anal. 37, 1317–1354 (2017)

    MathSciNet  MATH  Google Scholar 

  16. Carl, S., Le, V.K., Motreanu, D.: Nonsmooth variational problems and their inequalities: comparison principles and applications. Springer, New York (2007)

    Book  Google Scholar 

  17. Chen, L., Huang, J.: Some error analysis on virtual element methods. Calcolo 55, 23 (2018). (Art. 5)

  18. Chen, L., Huang, X.: Nonconforming virtual element method for 2\(m\)-th order partial differential equations in \({\mathbb{R}}^n\). Math. Comp. 89, 1711–1744 (2020)

  19. Ciarlet, P.G.: Linear and Nonlinear Functional Analysis with Applications. SIAM, Philadelphia (2013)

    MATH  Google Scholar 

  20. Clarke, F.H.: Optimization and Nonsmooth Analysis. Wiley Interscience, New York (1983)

    MATH  Google Scholar 

  21. Ekeland, I., Temam, R.: Convex Analysis and Variational Problems. North-Holland, Amsterdam (1976)

    MATH  Google Scholar 

  22. Fan, L., Liu, S., Gao, S.: Generalized monotonicity and convexity of non-differentiable functions. J. Math. Anal. Appl. 279, 276–289 (2003)

    Article  MathSciNet  Google Scholar 

  23. Feng, F., Han, W., Huang, J.: Virtual element methods for elliptic variational inequalities of the second kind. J. Sci. Comput. 80, 60–80 (2019)

    Article  MathSciNet  Google Scholar 

  24. Feng, F., Han, W., Huang, J.: Virtual element method for an elliptic hemivariational inequality with applications to contact mechanics. J. Sci. Comput. 81, 2388–2412 (2019)

    Article  MathSciNet  Google Scholar 

  25. Feng, K., Shi, Z.: Mathematical Theory of Elastic Structures. Springer, Berlin (1996)

    Google Scholar 

  26. Guo, L., Huang, J., Shi, Z.: Remarks on error estimates for the trunc plate element. J. Comput. Math. 24, 103–112 (2006)

    MathSciNet  MATH  Google Scholar 

  27. Han, W.: Minimization principles for elliptic hemivariational inequalities. Nonlinear Analysis: Real World Applications. 54 (2020), article number 103114

  28. Han, W., Migorski, S., Sofonea, M.: A class of variational-hemivariational inequalities with applications to frictional contact problems. SIAM J. Math. Anal. 46, 3891–3912 (2014)

    Article  MathSciNet  Google Scholar 

  29. Han, W., Sofonea, M.: Numerical analysis of hemivariational inequalities in contact mechanics. Acta Numer. 28, 175–286 (2019)

    Article  MathSciNet  Google Scholar 

  30. Han, W., Wang, L.: Nonconforming finite element analysis for a plate contact problem. SIAM J. Numer. Anal. 40, 1683–1697 (2002)

    Article  MathSciNet  Google Scholar 

  31. Haslinger, J., Miettinen, M., Panagiotopoulos, P.D.: Finite Element Method for Hemivariational Inequalities. Theory, Methods and Applications, Kluwer Academic, Dordrecht (1999)

  32. Huang, J., Shi, Z., Xu, Y.: Finite element analysis for general elastic multi-structures. Sci. China Ser. A. 49, 109–129 (2006)

    Article  MathSciNet  Google Scholar 

  33. Joki, K., Bagirov, A.M., Karmitsa, N., et al.: Double bundle method for finding Clarke stationary points in nonsmooth DC programming. SIAM J. Optim. 28, 1892–1919 (2018)

    Article  MathSciNet  Google Scholar 

  34. Migorski, S., Ochal, A., Sofonea, M.: Nonlinear Inclusions and Hemivariational Inequalities. Springer, New York (2013)

    Book  Google Scholar 

  35. Naniewicz, Z., Panagiotopoulos, P.D.: Mathematical Theory of Hemivariational Inequalities and Applications. Marcel Dekker, New York (1995)

    MATH  Google Scholar 

  36. Panagiotopoulos, P.D.: Hemivariational Inequalities, Applications in Mechanics and Engineering. Springer, Berlin (1993)

    Book  Google Scholar 

  37. Sofonea, M., Migórski, S.: Variational-Hemivariational Inequalities with Applications. Chapman & Hall/CRC Press, Boca Raton-London (2018)

    MATH  Google Scholar 

  38. Talischi, C., Paulino, G.H., Pereira, A., Menezes, I.F.M.: PolyMesher: a general-purpose mesh generator for polygonal elements written in Matlab. Struct. Multidiscip. Optim. 45, 309–328 (2012)

    Article  MathSciNet  Google Scholar 

  39. Wang, F., Wei, H.: Virtual element method for simplified friction problem. Appl. Math. Lett. 85, 125–131 (2018)

    Article  MathSciNet  Google Scholar 

  40. Wang, F., Wei, H.: Virtual element methods for the obstacle problem. IMA J. Numer. Anal. 40, 708–728 (2020)

    Article  MathSciNet  Google Scholar 

  41. Zhao, J., Chen, S., Zhang, B.: The nonconforming virtual element method for plate bending problems. Math. Models Methods Appl. Sci. 26, 1671–1687 (2016)

    Article  MathSciNet  Google Scholar 

  42. Zhang, B., Zhao, J., Yang, Y., Chen, S.: The nonconforming virtual element method for elasticity problems. J. Comput. Phys. 378, 394–410 (2019)

    Article  MathSciNet  Google Scholar 

  43. Zhao, J., Zhang, B., Chen, S., Mao, S.: The Morley-type virtual element for plate bending problems. J. Sci. Comput. 76, 610–629 (2018)

    Article  MathSciNet  Google Scholar 

Download references

Acknowledgements

The authors would like to thank Profs. K. Joki and O. Montonen for providing their algorithms freely at the website http://napsu.karmitsa.fi/nsosoftware/, which are very helpful for solving the discrete problems given in this paper. The authors also thank the two anonymous referees for valuable comments and suggestions which helped to improve an early version of the paper.

Funding

The work of Prof. Weimin Han was partially supported by Simons Foundation Collaboration Grants, No. 850737. The work of Prof. Jianguo Huang was partially supported by NSFC (Grant No. 12071289).

Author information

Authors and Affiliations

Authors

Contributions

All authors contributed equally to this manuscript.

Corresponding author

Correspondence to Jianguo Huang.

Ethics declarations

Conflict of interest

The authors have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this manuscript.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Feng, F., Han, W. & Huang, J. A Nonconforming Virtual Element Method for a Fourth-order Hemivariational Inequality in Kirchhoff Plate Problem. J Sci Comput 90, 89 (2022). https://doi.org/10.1007/s10915-022-01759-1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10915-022-01759-1

Keywords