Skip to main content
Log in

Superconvergence of MAC Scheme for a Coupled Free Flow-Porous Media System with Heat Transport on Non-uniform Grids

  • Published:
Journal of Scientific Computing Aims and scope Submit manuscript

Abstract

In this paper, a marker and cell (MAC) scheme is constructed for the free flow-porous media system with heat transport on non-uniform grids, where the Stokes-Darcy equation is employed to describe the free-flow and the porous regions. Error estimates for the velocity, pressure and temperature in different discrete norms are established rigorously and carefully by constructing discrete auxiliary functions. We obtain the second order superconvergence in the discrete \(L^2\) norm for velocity, pressure and temperature and the second order superconvergence for some terms of the \(H^1\) norm for the velocity on non-uniform grids. Several numerical examples verifying the theoretical results and illustrating the capabilities of the method are demonstrated.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Arbogast, T., Wheeler, M.F., Yotov, I.: Mixed finite elements for elliptic problems with tensor coefficients as cell-centered finite differences. SIAM J. Numer. Anal. 34, 828–852 (1997)

    Article  MathSciNet  Google Scholar 

  2. Beavers, G.S., Joseph, D.D.: Boundary conditions at a naturally permeable wall. J. Fluid Mech. 30, 197–207 (1967)

    Article  Google Scholar 

  3. Boubendir, Y., Tlupova, S.: Domain decomposition methods for solving Stokes-Darcy problems with boundary integrals. SIAM J. Sci. Comput. 35, B82–B106 (2013)

    Article  MathSciNet  Google Scholar 

  4. Brenner, S.C., Scott, L.R.: The Mathematical theory of finite element methods. 3rd edn (1994)

  5. Camano, J., Gatica, G.N., Oyarzua, R., Ruizbaier, R., Venegas, P.: New fully-mixed finite element methods for the Stokes-Darcy coupling. Comput. Methods Appl. Mech. Eng. 295, 362–395 (2015)

    Article  MathSciNet  Google Scholar 

  6. Cao, Y., Gunzburger, M., Hu, X., Hua, F., Wang, X., Zhao, W.: Finite element approximations for Stokes-Darcy flow with Beavers-Joseph interface conditions. SIAM J. Numer. Anal. 47, 4239–4256 (2010)

    Article  MathSciNet  Google Scholar 

  7. Cao, Y., Gunzburger, M.D., He, X., Wang, X.: Parallel, non-iterative, multi-physics domain decomposition methods for time-dependent Stokes-Darcy systems. Math. Comput. 83, 1617–1644 (2014)

    Article  MathSciNet  Google Scholar 

  8. Cao, Y., Gunzburger, M.D., Hua, F., Wang, X.: Coupled Stokes-Darcy model with Beavers-Joseph interface boundary condition. Commun. Math. Sci. 8, 1–25 (2010)

    Article  MathSciNet  Google Scholar 

  9. Chen, H., Sun, S., Zhang, T.: Energy stability analysis of some fully discrete numerical schemes for incompressible Navier-Stokes equations on staggered grids. J. Sci. Comput. 75, 427–456 (2018)

    Article  MathSciNet  Google Scholar 

  10. Dawson, C., Wheeler, M.F., Woodward, C.S.: A two-grid finite difference scheme for nonlinear parabolic equations. SIAM J. Numer. Anal. 35, 435–452 (1998)

    Article  MathSciNet  Google Scholar 

  11. Girault, V., Lopez, H.: Finite-element error estimates for the MAC scheme. IMA J. Numer. Anal. 16, 347–379 (1996)

    Article  MathSciNet  Google Scholar 

  12. Han, H., Wu, X.: A new mixed finite element formulation and the MAC method for the stokes equations. SIAM J. Numer. Anal. 35, 560–571 (1998)

    Article  MathSciNet  Google Scholar 

  13. Hill, A.A., Straughan, B.: Poiseuille flow in a fluid overlying a porous medium. J. Fluid Mech. 603, 137–149 (2008)

    Article  MathSciNet  Google Scholar 

  14. Hill, A.A., Straughan, B.: Global stability for thermal convection in a fluid overlying a highly porous material. Proceed. R. Soc. A: Math., Phys. Eng. Sci. 465, 207–217 (2009)

    Article  MathSciNet  Google Scholar 

  15. Li, J., Sun, S.: The superconvergence phenomenon and proof of the MAC scheme for the stokes equations on non-uniform rectangular meshes. J. Sci. Comput. 65, 341–362 (2015)

    Article  MathSciNet  Google Scholar 

  16. Li, X., Rui, H.: Block-centered finite difference method for simulating compressible wormhole propagation. J. Sci. Comput. 74, 1115–1145 (2018)

    Article  MathSciNet  Google Scholar 

  17. Li, X., Rui, H.: Superconvergence of characteristics marker and cell scheme for the Navier-Stokes equations on nonuniform grids. SIAM J. Numer. Anal. 56, 1313–1337 (2018)

    Article  MathSciNet  Google Scholar 

  18. Li, X., Rui, H.: Superconvergence of a fully conservative finite difference method on non-uniform staggered grids for simulating wormhole propagation with the Darcy-Brinkman-Forchheimer framework. J. Fluid Mech. 872, 438–471 (2019)

    Article  MathSciNet  Google Scholar 

  19. Lipnikov, K., Vassilev, D., Yotov, I.: Discontinuous galerkin and mimetic finite difference methods for coupled Stokes-Darcy flows on polygonal and polyhedral grids. Numer. Math. 126, 321–360 (2014)

    Article  MathSciNet  Google Scholar 

  20. Mccurdy, M., Moore, N., Wang, X.: Convection in a coupled free flow-porous media system. SIAM J. Appl. Math. 79, 2313–2339 (2019)

    Article  MathSciNet  Google Scholar 

  21. Monk, P., Süli, E.: A convergence analysis of Yee’s scheme on nonuniform grids. SIAM J. Numer. Anal. 31, 393–412 (1994)

    Article  MathSciNet  Google Scholar 

  22. Nicolaides, R.: Analysis and convergence of the MAC scheme. I. the linear problem. SIAM J. on Numer. Anal. 29, 1579–1591 (1992)

    Article  MathSciNet  Google Scholar 

  23. Perot, B.: Conservation properties of unstructured staggered mesh schemes. J. Comput. Phys. 159, 58–89 (2000)

    Article  MathSciNet  Google Scholar 

  24. Perot, J.B.: Discrete conservation properties of unstructured mesh schemes. Annu. Rev. Fluid Mech. 43, 299–318 (2011)

    Article  MathSciNet  Google Scholar 

  25. Riviere, B., Yotov, I.: Locally conservative coupling of Stokes and Darcy flows. SIAM J. Numer. Anal. 42, 1959–1977 (2004)

    Article  MathSciNet  Google Scholar 

  26. Rui, H., Li, X.: Stability and superconvergence of MAC scheme for Stokes equations on nonuniform grids. SIAM J. Numer. Anal. 55, 1135–1158 (2017)

    Article  MathSciNet  Google Scholar 

  27. Rui, H., Pan, H.: A block-centered finite difference method for the Darcy-Forchheimer model. SIAM J. Numer. Anal. 50, 2612–2631 (2012)

    Article  MathSciNet  Google Scholar 

  28. Rui, H., Sun, Y.: A MAC scheme for coupled Stokes-Darcy equations on non-uniform grids. J. Sci. Comput. 82, 1–29 (2020)

    Article  MathSciNet  Google Scholar 

  29. Rui, H., Zhang, J.: A stabilized mixed finite element method for coupled Stokes and Darcy flows with transport. Comput. Methods Appl. Mech. Eng. 315, 169–189 (2017)

    Article  MathSciNet  Google Scholar 

  30. Rui, H., Zhang, R.: A unified stabilized mixed finite element method for coupling Stokes and Darcy flows. Comput. Methods Appl. Mech. Eng. 198, 2692–2699 (2009)

    Article  MathSciNet  Google Scholar 

  31. Saffman, P.G.: On the boundary condition at the surface of a porous medium. Stud. Appl. Math. 50, 93–101 (1971)

    Article  Google Scholar 

  32. Shiue, M., Ong, K.C., Lai, M.: Convergence of the MAC scheme for the Stokes/Darcy coupling problem. J. Sci. Comput. 76, 1216–1251 (2018)

    Article  MathSciNet  Google Scholar 

  33. Wang, W., Xu, C.: Spectral methods based on new formulations for coupled Stokes and Darcy equations. J. Comput. Phys. 257, 126–142 (2014)

    Article  MathSciNet  Google Scholar 

Download references

Acknowledgements

The authors would like to thank Prof. Xiao-Ping Wang from the Hong Kong University of Science and Technology for valuable discussions and suggestions.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hongxing Rui.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

This work is supported by the National Natural Science Foundation of China under Grant Number 11901489, 12131014.

Appendix A Preliminaries for the Discrete LBB Condition

Appendix A Preliminaries for the Discrete LBB Condition

In this appendix, we give some details of the discrete LBB condition. Here we use notation and results similar to [26, 28]. Let

$$\begin{aligned} b(\mathbf{v} ,q)=-\int _\Omega ~qdiv \mathbf{v} dx, ~\mathbf{v} \in \mathbf{V} ,~q\in W, \end{aligned}$$

where \(\mathbf{V} = \mathbf{V} _f \cup \mathbf{V} _m\) with norm for the velocity

$$\begin{aligned} \Vert \mathbf{v} \Vert _{\mathbf{V} } = ( \Vert \nabla \mathbf{v} \Vert _{\Omega _f}^2 +\Vert \mathbf{v} \Vert _{\Omega _m}^2 + \Vert \nabla \cdot \mathbf{v} \Vert _{\Omega _m}^2 )^{1/2}. \end{aligned}$$

Here

$$\begin{aligned}&\mathbf{V} _f := \{\mathbf{v } \in ( H^1(\Omega _f) )^2 , \mathbf{v} |_{\Gamma _f}=0 \},\ \mathbf{V} _m := \{\mathbf{v } \in H(div;\Omega _m), \ \mathbf{v} \cdot \mathbf{n} |_{\Gamma _m} =0 \},\\&W= \left\{ q \in W_f \cup W_m, \int _{\Omega } q dx=0 \right\} , \ W_f := L^2(\Omega _f), \ W_m := L^2(\Omega _m). \end{aligned}$$

with \(H(div;\Omega _m) \) as a Hilbert space defined by

$$\begin{aligned} H(div;\Omega _m) = \{ \mathbf{v} \in ( L^2(\Omega _m) )^2; \nabla \cdot \mathbf{v} \in L^2( \Omega _m ) \}, \end{aligned}$$
Fig. 3
figure 3

Partitions: a \({\mathcal {T}}_h\), b \({\mathcal {T}}_h^1\), c \({\mathcal {T}}_h^2\)

Then we construct the finite-dimensional subspaces of W and \(\mathbf{V} \) by introducing three different partitions \({\mathcal {T}}_h,{\mathcal {T}}_h^1,{\mathcal {T}}_h^2\) of \(\Omega \). The original partition \(\delta _x\times \delta _y\) is denoted by \({\mathcal {T}}_h\) (see Fig. 3). The partition \({\mathcal {T}}_h^1\) is generated by connecting all the midpoints of the vertical sides of \(\Omega _{i+1/2,j+1/2}\) and extending the resulting mesh to the boundary \(\Gamma \). Similarly, for all \(\Omega _{i+1/2,j+1/2}\in {\mathcal {T}}_h\) we connect all the midpoints of the horizontal sides of \(\Omega _{i+1/2,j+1/2}\) and extend the resulting mesh to the boundary \(\Gamma \), then the third partition is obtained which is denoted by \({\mathcal {T}}_h^2\).

Corresponding to the quadrangulation \({\mathcal {T}}_h\), define \(W_h\), a subspace of W,

$$\begin{aligned} W_h=\left\{ q_h:~q_h|_T=constant,~\forall T\in {\mathcal {T}}_h ~and \int _\Omega qdx=0\right\} . \end{aligned}$$

Furthermore, let \(\mathbf{V} _h\) be a subspace of \(\mathbf{V} \) such that \(\mathbf{V} _h= \mathbf{V} \cap ( \mathbf{V} _{f,h} \cup \mathbf{V} _{m,h}) \) equipped with the discrete norm for velocity

$$\begin{aligned} \Vert \mathbf{v} \Vert _h= ( \Vert D\mathbf{v} \Vert _f^2 + \Vert \mathbf{v} \Vert _m^2 )^{1/2}, \end{aligned}$$

where

$$\begin{aligned} \mathbf{V} _{f,h}&:= \{ \mathbf{v} = (v^x,v^y) \in C^{(0)} (\overline{\Omega } _f )^2: v^x|_{T^1} \in Q_1(T^1), \ \forall T^1\in {\mathcal {T}}_h^1 \cap \Omega _f ; \\&\qquad v^y |_{T^2} \in Q_1(T^2), \ \forall T^2 \in {\mathcal {T}}_h^2 \cap \Omega _f \} \end{aligned}$$

and \(Q_1\) denotes the space of all polynomials of degree \(\le 1\) with respect to each of the two variables x and y. On the porous medium \(\Omega _m\), define

$$\begin{aligned} \mathbf{V} _{m,h}&:= \{ \mathbf{v} = (v^x,v^y) \in H(div, \Omega _m ): v^x|_{T^1} \in Q_{1,0}(T^1), \ \forall T^1\in {\mathcal {T}}_h^1 \cap \Omega _m ; \\&\qquad v^y |_{T^2} \in Q_{0,1}(T^2), \ \forall T^2 \in {\mathcal {T}}_h^2 \cap \Omega _m \} \end{aligned}$$

and \(Q_{m,s}\) denotes the space of all polynomials of degree \(\le m\) with respect to x and degree \(\le s\) with respect to y. It is clear that \(\mathbf{V} _{m,h}\) is the lowest-order Raviart-Thomas-Nedelec (RTN) spaces on rectangles [1, 16].

Then we introduce the bilinear forms

$$\begin{aligned} b_h(\mathbf{v} _h,q_h)=-\sum _{\Omega _{i+1/2,j+1/2} \in {\mathcal {T}}_h}\int _{\Omega _{i+1/2,j+1/2}} q_h P_h(div\mathbf{v} _h)dx,~\mathbf{v} _h\in \mathbf{V} _h,~q_h\in W_h, \end{aligned}$$

where \( P_h: \ C^{(0)}(\overline{\Omega }_{i+1/2,j+1/2}) \rightarrow Q_0(\Omega _{i+1/2,j+1/2})\) such that

$$\begin{aligned}&(P_h\varphi )_{i+1/2,j+1/2}=\varphi _{i+1/2,j+1/2}, ~~\forall ~\Omega _{i+1/2,j+1/2}\in {\mathcal {T}}_h. \end{aligned}$$

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, X., Rui, H. Superconvergence of MAC Scheme for a Coupled Free Flow-Porous Media System with Heat Transport on Non-uniform Grids. J Sci Comput 90, 90 (2022). https://doi.org/10.1007/s10915-022-01763-5

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10915-022-01763-5

Keywords

Mathematics Subject Classification

Navigation