Skip to main content
Log in

An Interior Point Parameterized Central Path Following Algorithm for Linearly Constrained Convex Programming

  • Published:
Journal of Scientific Computing Aims and scope Submit manuscript

Abstract

An interior point algorithm is proposed for linearly constrained convex programming following a parameterized central path, which is a generalization of the central path and requires weaker convergence conditions. The convergence and polynomial-time complexity of the proposed algorithm are proved under the assumption that the Hessian of the objective function is locally Lipschitz continuous. In addition, an initialization strategy is proposed and some numerical results are provided to show the efficiency and attractiveness of the proposed algorithm.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Alder, I., Monteiro, R.D.: Limiting behavior of the affine scaling continuous trajectories for linear programming problems. Math. Program. 50(1), 29–51 (1991)

    MathSciNet  Google Scholar 

  2. Andrei, N.: Predictor-corrector interior-point methods for linear constrained optimization. Stud. Inform. Control. 7(2), 155–177 (1998)

    Google Scholar 

  3. Andri, N.: An unconstrained optimization test functions collection. Adv. Model. Optim. 10(1), 147–181 (2008)

    MathSciNet  Google Scholar 

  4. Burke, J.V., Xu, S.: The global linear convergence of a noninterior path-following algorithm for linear complementarity problems. Math. Oper. Res. 23(3), 719–734 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  5. Burke, J.V., Xu, S.: A non-interior predictor-corrector path following algorithm for the monotone linear complementarity problem. Math. Program. 87(1), 113–130 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  6. Burke, J.V., Xu, S.: Complexity of a noninterior path-following method for the linear complementarity problem. J. Optim. Theory Appl. 112(1), 53–76 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  7. Chen, B., Chen, X.: A global and local superlinear continuation-smoothing method for \({P}_0\) and \({R}_0\) NCP or monotone NCP. SIAM J. Optim. 9(3), 624–645 (1999)

    Article  MathSciNet  Google Scholar 

  8. Chen, B., Chen, X.: A global linear and local quadratic continuation smoothing method for variational inequalities with box constraints. Comput Optimi Appl. 17(2–3), 131–158 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  9. Chen, B., Harker, P.T.: A non-interior-point continuation method for linear complementarity problems. SIAM J. Matrix Anal. Appl. 14(4), 1168–1190 (1993)

    Article  MathSciNet  MATH  Google Scholar 

  10. Chen, B., Xiu, N.: A global linear and local quadratic noninterior continuation method for nonlinear complementarity problems based on Chen-Mangasarian smoothing functions. SIAM J. Optim. 9(3), 605–623 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  11. Chen, X., Tseng, P.: Non-interior continuation methods for solving semidefinite complementarity problems. Math. Program. 95(3), 431–474 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  12. Chubanov, S.: A polynomial-time descent method for separable convex optimization problems with linear constraints. SIAM J. Optim. 26(1), 856–889 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  13. Den Hertog, D., Roos, C., Terlaky, T.: On the classical logarithmic barrier function method for a class of smooth convex programming problems. J. Optim. Theory Appl. 73(1), 1–25 (1992)

    Article  MathSciNet  MATH  Google Scholar 

  14. Dikin, I.I.: Iterative solution of problems of linear and quadratic programming. Dokl. Akad. Nauk SSSR 174, 747–748 (1967)

    MathSciNet  MATH  Google Scholar 

  15. Drummond, L.G., Svaiter, B.F.: On well definedness of the central path. J. Optim. Theory Appl. 102(2), 223–237 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  16. Grossmann, C.: Asymptotic analysis of a path-following barrier method for linearly constrained convex problems. Optimization 45(1–4), 69–87 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  17. Grossmann, C.: Penalty/Barrier path-following in linearly constrained optimization. Discuss. Math. Differ. Incl. Control Optim. 20(1), 7–26 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  18. Kanzow, C.: Some noninterior continuation methods for linear complementarity problems. SIAM J. Matrix Anal. Appl. 17(4), 851–868 (1996)

    Article  MathSciNet  MATH  Google Scholar 

  19. Karmarkar, N.: A new polynomial-time algorithm for linear programming. Combinatorica 4(4), 373–395 (1984)

    Article  MathSciNet  MATH  Google Scholar 

  20. Kojima, M., Megiddo, N., Noma, T.: Homotopy continuation methods for nonlinear complementarity problems. Math. Oper. Res. 16(4), 754–774 (1991)

    Article  MathSciNet  MATH  Google Scholar 

  21. Kojima, M., Mizuno, S., Noma, T.: Limiting behavior of trajectories generated by a continuation method for monotone complementarity problems. Math. Oper. Res. 15(4), 662–675 (1990)

    Article  MathSciNet  MATH  Google Scholar 

  22. Kojima, M., Mizuno, S., Yoshise, A.: A polynomial-time algorithm for a class of linear complementarity problems. Math. Program. 44(1–3), 1–26 (1989)

    Article  MathSciNet  MATH  Google Scholar 

  23. Kojima, M., Mizuno, S., Yoshise, A.: A primal-dual interior point algorithm for linear programming. In: Progress in mathematical programming (Pacific Grove, CA, 1987), pp. 29–47. Springer, New York (1989)

  24. Kojima, M., Mizuno, S., Yoshise, A.: An \( O (\sqrt{n} {L}) \) iteration potential reduction algorithm for linear complementarity problems. Math. Program. 50(1–3), 331–342 (1991)

    Article  MATH  Google Scholar 

  25. Kortanek, K.O., Potra, F., Ye, Y.: On some efficient interior point methods for nonlinear convex programming. Linear Alg. Appl. 152, 169–189 (1991)

    Article  MathSciNet  MATH  Google Scholar 

  26. Kortanek, K.O., Zhu, J.: A polynomial barrier algorithm for linearly constrained convex programming problems. Math. Oper. Res. 18(1), 116–127 (1993)

    Article  MathSciNet  MATH  Google Scholar 

  27. Kortanek, K.O., Zhu, J.: On controlling the parameter in the logarithmic barrier term for convex programming problems. J. Optim. Theory Appl. 84(1), 117–143 (1995)

    Article  MathSciNet  MATH  Google Scholar 

  28. Liao, L.-Z.: A study of the dual affine scaling continuous trajectories for linear programming. J. Optim. Theory Appl. 163(2), 548–568 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  29. Mclinden, L.: An analogue of Moreau’s proximation theorem, with application to the nonlinear complementarity problem. Pac. J. Math. 88(1), 101–161 (1980)

    Article  MathSciNet  MATH  Google Scholar 

  30. Megiddo, N.: Pathways to the optimal set in linear programming. In: Progress in mathematical programming (Pacific Grove, CA, 1987), pp. 131–158. Springer, New York (1989)

  31. Mehrotra, S., Sun, J.: An algorithm for convex quadratic programming that requires \({O}(n^{3.5}{L})\) arithmetic operations. Math. Oper. Res. 15(2), 342–363 (1990)

    Article  MathSciNet  MATH  Google Scholar 

  32. Mehrotra, S., Sun, J.: An interior point algorithm for solving smooth convex programs based on Newton’s method. In: Mathematical developments arising from linear programming (Brunswick, ME, 1988), Contemp. Math., vol. 114, pp. 265–284. Amer. Math. Soc., Providence, RI (1990)

  33. Mehrotra, S., Sun, J.: A method of analytic centers for quadratically constrained convex quadratic programs. SIAM J. Numer. Anal. 28(2), 529–544 (1991)

    Article  MathSciNet  MATH  Google Scholar 

  34. Mizuno, S.: Polynomiality of the Kojima-Megiddo-Mizuno infeasible interior point algorithm for linear programming. Tech. Rep., Operations Research and Industrial Engineering, Cornell University (1992)

  35. Mizuno, S., Todd, M.J., Ye, Y.: On adaptive-step primal-dual interior-point algorithms for linear programming. Math. Oper. Res. 18(4), 964–981 (1993)

    Article  MathSciNet  MATH  Google Scholar 

  36. Monteiro, R.D.: Convergence and boundary behavior of the projective scaling trajectories for linear programming. Math. Oper. Res. 16(4), 842–858 (1991)

    Article  MathSciNet  MATH  Google Scholar 

  37. Monteiro, R.D.: On the continuous trajectories for a potential reduction algorithm for linear programming. Math. Oper. Res. 17(1), 225–253 (1992)

    Article  MathSciNet  MATH  Google Scholar 

  38. Monteiro, R.D.: A globally convergent primal-dual interior point algorithm for convex programming. Math. Program. 64(1–3), 123–147 (1994)

    Article  MathSciNet  MATH  Google Scholar 

  39. Monteiro, R.D., Adler, I.: Interior path following primal-dual algorithms. Part I: Linear programming. Math. Program. 44(1–3), 27–41 (1989)

    Article  MATH  Google Scholar 

  40. Monteiro, R.D., Adler, I.: Interior path following primal-dual algorithms. Part II: Convex quadratic programming. Math. Program. 44(1–3), 43–66 (1989)

    Article  MATH  Google Scholar 

  41. Monteiro, R.D., Adler, I.: An extension of Karmarkar type algorithm to a class of convex separable programming problems with global linear rate of convergence. Math. Oper. Res. 15(3), 408–422 (1990)

    Article  MathSciNet  MATH  Google Scholar 

  42. Monteiro, R.D., Tsuchiya, T., Wang, Y.: A simplified global convergence proof of the affine scaling algorithm. Ann. Oper. Res. 46(2), 443–482 (1993)

    Article  MathSciNet  MATH  Google Scholar 

  43. Monteiro, R.D., Zou, F.: On the existence and convergence of the central path for convex programming and some duality results. Comput. Optim. Appl. 10(1), 51–77 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  44. Necoara, I., Suykens, J.: Interior-point Lagrangian decomposition method for separable convex optimization. J. Optim. Theory Appl. 143(3), 567–588 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  45. Potra, F., Ye, Y.: A quadratically convergent polynomial algorithm for solving entropy optimization problems. SIAM J. Optim. 3(4), 843–860 (1993)

    Article  MathSciNet  MATH  Google Scholar 

  46. Qi, L., Sun, D.: Improving the convergence of non-interior point algorithms for nonlinear complementarity problems. Math. Comput. 69(229), 283–304 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  47. Qian, X., Liao, L.-Z.: Generalized affine scaling trajectory analysis for linearly constrained convex programming. In: International Symposium on Neural Networks, pp. 139–147. Springer (2018)

  48. Qian, X., Liao, L.-Z., Sun, J.: Analysis of some interior point continuous trajectories for convex programming. Optimization 66(4), 589–608 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  49. Qian, X., Liao, L.-Z., Sun, J.: A strategy of global convergence for the affine scaling algorithm for convex semidefinite programming. Math. Program. 179(1), 1–19 (2020)

    Article  MathSciNet  MATH  Google Scholar 

  50. Qian, X., Liao, L.-Z., Sun, J., Zhu, H.: The convergent generalized central paths for linearly constrained convex programming. SIAM J. Optim. 28(2), 1183–1204 (2018)

    Article  MathSciNet  MATH  Google Scholar 

  51. Sheu, R.L.: A generalized interior-point barrier function approach for smooth convex programming with linear constraints. J. Inform. Optim. Sci. 20(2), 187–202 (1999)

    MathSciNet  MATH  Google Scholar 

  52. Shi, Y.: A combination of potential reduction steps and steepest descent steps for solving convex programming problems. Numer. Linear Algebra Appl. 9(3), 195–203 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  53. Shi, Y.: A projected-steepest-descent potential-reduction algorithm for convex programming problems. Numer. Linear Algebra Appl. 11(10), 883–893 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  54. Sonnevend, G., Stoer, J., Zhao, G.: On the complexity of following the central path of linear programs by linear extrapolation II. Math. Program. 52(1–3), 527–553 (1991)

    Article  MathSciNet  MATH  Google Scholar 

  55. Sun, J.: A convergence analysis for a convex version of Dikin’s algorithm. Ann. Oper. Res. 62(1), 357–374 (1996)

    Article  MathSciNet  MATH  Google Scholar 

  56. Sun, J., Zhu, J., Zhao, G.: A predictor-corrector algorithm for a class of nonlinear saddle point problems. SIAM J. Control. Optim. 35(2), 532–551 (1997)

    Article  MathSciNet  MATH  Google Scholar 

  57. Todd, M.J., Ye, Y.: A centered projective algorithm for linear programming. Math. Oper. Res. 15(3), 508–529 (1990)

    Article  MathSciNet  MATH  Google Scholar 

  58. Tseng, P., Luo, Z.Q.: On the convergence of the affine-scaling algorithm. Math. Program. 56(1–3), 301–319 (1992)

    Article  MathSciNet  MATH  Google Scholar 

  59. Wächter, A., Biegler, L.T.: On the implementation of an interior-point filter line-search algorithm for large-scale nonlinear programming. Math. Program. 106(1), 25–57 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  60. Wolfe, P.: A duality theorem for non-linear programming. Quart. Appl. Math. 19(3), 239–244 (1961)

    Article  MathSciNet  MATH  Google Scholar 

  61. Xu, S., Burke, J.V.: A polynomial time interior-point path-following algorithm for LCP based on Chen-Harker-Kanzow smoothing techniques. Math. Program. 86(1), 91–103 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  62. Ye, Y.: An \({O} (n^3{L})\) potential reduction algorithm for linear programming. Math. Program. 50(1–3), 239–258 (1991)

    Article  MATH  Google Scholar 

  63. Ye, Y., Anstreicher, K.: On quadratic and \( {O}(\sqrt{n}{L}) \) convergence of a predictor-corrector algorithm for LCP. Math. Program. 62(1–3), 537–551 (1993)

    Article  MathSciNet  MATH  Google Scholar 

  64. Ye, Y., Güler, O., Tapia, R.A., Zhang, Y.: A quadratically convergent \({O}(\sqrt{n}{L})\)-iteration algorithm for linear programming. Math. Program. 59(1–3), 151–162 (1993)

    Article  MATH  Google Scholar 

  65. Zhu, J.: A path following algorithm for a class of convex programming problems. Z. Oper. Res. 36(4), 359–377 (1992)

    MathSciNet  MATH  Google Scholar 

Download references

Acknowledgements

The authors would like to thank the Associate Editor and one anonymous referee for their constructive comments and suggestions on the earlier version of this paper.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Li-Zhi Liao.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

The work of L.-Z. Liao was supported in part by grants from General Research Fund (GRF) of Hong Kong. The work of J. Sun was partially supported by Australia Council Research under grant DP160102918.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hou, L., Qian, X., Liao, LZ. et al. An Interior Point Parameterized Central Path Following Algorithm for Linearly Constrained Convex Programming. J Sci Comput 90, 95 (2022). https://doi.org/10.1007/s10915-022-01765-3

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10915-022-01765-3

Keywords

Mathematics Subject Classification

Navigation