Abstract
The numerical computation of a matrix function such as \(\exp {(-tA)V}\), where A is an \(n\times n\) large and sparse matrix, V is an \(n \times p\) block with \(p\ll n\), and \(t>0\) arises in various applications including network analysis, the solution of time-dependent partial differential equations (PDE’s) and others. In this work, we propose the use of the global extended-rational Arnoldi method for computing approximations of such functions. The derived method projects the initial problem onto the global extended-rational Krylov subspace \(\mathcal {RK}^{e}_m(A,V)=\text {span}\{\prod \limits \nolimits _{i=1}^m(A+s_iI_n)^{-1}V,\ldots ,(A+s_1I_n)^{-1}V,V\) \(,AV, \ldots ,A^{m-1}V\}\) of a low dimension. An adaptive procedure of getting the shifts \(\{s_1,\ldots ,s_m\}\) during the algorithmic process is given and analyzed. Applications to the solution of time-dependent PDE’s and to network analysis are presented. Numerical examples are presented to show the performance of the global extended-rational Arnoldi process.








Similar content being viewed by others
Data Availability
Enquiries about data availability should be directed to the authors.
References
Abidi, O., Hached, M., Jbilou, K.: A global rational Arnoldi method for model reduction. J. Comput. Appl. Math. 325, 175–187 (2017)
Abou-Kandil, H., Freiling, G., Ionescu, V., Jank, G.: Matrix Riccati Equations in Control and Systems Theory, in Systems & Control Foundations & Applications. Birkhauser, Basel (2003)
Bellalij, M., Jbilou, K., Sadok, H.: New convergence results on the global GMRES method for diagonalizable matrices. J. Comput. Appl. Math. 219, 350–358 (2008)
Bentbib, A., El Ghomari, M., Jbilou, K., Reichel, L.: Shifted extended global Lanczos processes for trace estimation with application to network analysis. Calcolo 58, 1–35 (2021)
Bentbib, A., El Guide, M., Jbilou, K., Reichel, L.: A global Lanczos method for image restoration. J. Comput. Appl. Math. 300, 233–244 (2016)
Benzi, M., Simunec, I.: Rational Krylov methods for fractional diffusion problems on graphs. Bit Numer. Math. 146, 1–29 (2021)
Benzi, M., Simunec, I.: Matrix functions in network analysis. GAMM Mitteilungen 43, e202000012 (2020)
Botchev, M., Knizhnerman, L.: ART: adaptive residual-time restarting for Krylov subspace matrix exponential evaluations. J. Comput. Appl. Math. 364, 112311 (2019)
Bouhamidi, A., Jbilou, K., Reichel, L., Sadok, H.: A generalized global Arnoldi method for ill posed matrix equations. J. Comput. Appl. Math. 236, 2078–2089 (2012)
Bouyouli, R., Jbilou, K., Sadaka, R., Sadok, H.: Convergence properties of some block Krylov subspace methods for multiple linear systems. J. Comput. Appl. Math. 196, 498–511 (2006)
De la Cruz Cabrera, O., Matar, M., Reichel, L.: Analysis of directed networks via the matrix exponential. J. Comput. Appl. Math. 355, 182–192 (2019)
Davis, T., Hu, Y.: The SuiteSparse Matrix Collection. https://sparse.tamu.edu
Druskin, V., Lieberman, C.E., Zaslavsky, M.: On adaptive choice of shifts in rational Krylov subspace reduction of evolutionary problems. SIAM J. Sci. Comput. 32, 2485–2496 (2010)
Druskin, V., Simoncini, V.: Adaptive rational Krylov subspaces for large-scale dynamical systems. J. Sysconle. 60, 546–560 (2011)
Druskin, V., Knizhnerman, L.: Two polynomial methods of calculating functions of symmetric matrices. USSR Comput. Math. Phys. 29, 112–121 (1989)
Güttel, S.: Rational Krylov approximation of matrix functions: numerical methods and optimal pole selection. GAMM-Mitteilungen 36, 8–31 (2013)
Hached, M., Jbilou, K.: Computational Krylov-based methods for large-scale differential Sylvester matrix problems. Numer. Linear Algebra Appl. 255, e2187 (2018)
Hansen, P.C.: Rank-Deficient and Discrete Ill-Posed Problems. SIAM, Philadelphia (1998)
Higham, N.J.: Functions of Matrices: Theory and Computation. SIAM, Philadelphia (2008)
Hochbruck, M., Lubich, C.: On Krylov subspace approximations to the matrix exponential operator. SIAM J. Numer. Anal. 34, 1911–1925 (1997)
Hundsdorfer, W., Verwer, J.G.: Numerical Solution of Time-Dependent Advection–Diffusion–Reaction Equations. Springer, Berlin (2003)
Jbilou, K., Messaoudi, A., Sadok, H.: Global FOM and GMRES algorithms for matrix equations. Appl. Numer. Math. 31, 49–63 (1999)
Jbilou, K.: Low rank approximate solutions to large Sylvester matrix equations. Appl. Math. Comput. 177, 365–376 (2006)
Knizhnerman, L., Druskin, V., Zaslavsky, M.: On optimal convergence rate of the rational Krylov subspace reduction for electromagnetic problems in unbounded domains. SIAM J. Numer. Anal. 47, 953–971 (2009)
Knizhnerman, L., Simoncini, V.: A new investigation of the extended Krylov subspace method for matrix function evaluations. Numer. Linear Algebra Appl. 17, 615–638 (2010)
Krukier, L.A.: Implicit difference schemes and an iterative method for solving them for a certain class of systems of quasi-linear equations. Sov. Math. 23, 43–55 (1979)
Moret, I., Novati, P.: Krylov subspace methods for functions of fractional operators. Math. Comput. 88, 293–312 (2019)
Pranic, S., Reichel, L., Rodriguez, G., Wang, Z., Yu, X.: A rational Arnoldi process with applications. Numer. Linear Algebra Appl. 23, 1007–1022 (2016)
Ruhe, A.: Rational Krylov sequence methods for eigenvalue computation. Linear Algebra Appl. 58, 391–405 (1984)
Saad, Y.: Analysis of some Krylov subspace approximations to the matrix exponential operator. SIAM J. Numer. Anal. 29, 209–228 (1992)
Saad, Y.: Iterative Methods for Sparse Linear Systems. PWS Press, New York (1995)
Van den Eshof, J., Hochbruck, M.: Preconditioning Lanczos approximations to the matrix exponential. SIAM J. Sci. Comput. 27, 1438–1457 (2006)
Acknowledgements
We would like to thank the referees for their valuable remarks and suggestions allowing us to improve the quality of the paper.
Funding
The authors have not disclosed any funding.
Author information
Authors and Affiliations
Corresponding author
Ethics declarations
Conflict of interest
The authors have not disclosed any competing interests.
Additional information
Publisher's Note
Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
Rights and permissions
About this article
Cite this article
Bentbib, A.H., Ghomari, M.E. & Jbilou, K. An Extended-Rational Arnoldi Method for Large Matrix Exponential Evaluations. J Sci Comput 91, 36 (2022). https://doi.org/10.1007/s10915-022-01808-9
Received:
Revised:
Accepted:
Published:
DOI: https://doi.org/10.1007/s10915-022-01808-9
Keywords
- Extended-rational Krylov subspace
- Exponential matrix function
- Global Arnoldi method
- Network analysis
- Partial differential equations