Skip to main content
Log in

An Adaptive Data-Driven Reduced Order Model Based on Higher Order Dynamic Mode Decomposition

  • Published:
Journal of Scientific Computing Aims and scope Submit manuscript

Abstract

A new data-driven reduced order model is developed to efficiently simulate transient dynamics, with the aim at computing the final attractor. The method combines a standard numerical solver and time extrapolation based on a recent data processing tool, called higher order dynamic mode decomposition. Such combination is made using interspersed time intervals, called snapshots computation (obtained from the numerical solver) and extrapolation intervals (computed by the model). The process continues, alternating snapshots computation and extrapolation intervals, until that moment at which the final attractor is reached. Thus, the method adapts the extrapolated approximations to the varying dynamics along the transient simulation. The performance of the new method is tested considering representative transient solutions of the one-dimensional complex Ginzburg–Landau equation. In this application, the speed-up factor of the reduced order model, comparing its computational cost with that of the standard numerical solver, is always much larger than one in the computation of representative periodic and quasi-periodic attractors.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Data Availability

The data and codes presented in the manuscript will be make available upon reasonable request.

References

  1. Alonso, D., Vega, J.M., Velázquez, A., de Pablo, V.: Reduced order modeling of three dimensional external aerodynamic flows. J. Aerosp. Eng. 25, 588–599 (2011)

    Article  Google Scholar 

  2. Aranson, I.S., Kramer, L.: The world of the complex Ginzburg–Landau equation. Rev. Mod. Phys. 74, 100–142 (2002)

    Article  MathSciNet  Google Scholar 

  3. Bache, E., Vega, J.M., Velazquez, A.: Model reduction in the back step fluid-thermal problem with variable geometry. Int. J. Therm. Sci. 49, 2376–2384 (2010)

    Article  Google Scholar 

  4. Beltrán, V., Le Clainche, S., Vega, J.M.: Temporal extrapolation of quasi-periodic solutions via DMD-like methods. In: AIAA 2018 Fluid Dynamics Conference, vol. 3092 (2018)

  5. Beltrán, V., Le Clainche, S., Vega, J..M.: A data-driven ROM based on HODMD. In: Alvarez, M., Lora, T., Muñoz, S., Quintián, C. (Eds.) 14th International Conference on Soft Computing Models in Industrial and Environmental Applications (SOCO 2019). Advances in Intelligent Systems and Computing, vol. 950, pp. 567–576. Springer (2020)

  6. Brunton, S., Kutz, J.: Reduced order models (ROMs). In: Data-Driven Science and Engineering: Machine Learning, Dynamical Systems, and Control. Cambridge University Press (2019)

  7. Brunton, S.L., Tu, J.H., Bright, I., Kutz, J.N.: Compressive sensing and low-rank libraries for classification of bifurcation regimes in nonlinear dynamical systems. SIAM J. Appl. Dyn. Syst. 13(4), 66 (2013)

    MathSciNet  MATH  Google Scholar 

  8. Cebeci, T.: Convective Heat Transfer. Springer, Berlin (2002)

    Book  Google Scholar 

  9. Chen, K.K., Tu, J.H., Rowley, C.W.: Variants of dynamic mode decomposition: boundary condition, Koopman and Fourier analyses. J. Nonlinear Sci. 22, 8871–8875 (2012)

    Article  MathSciNet  Google Scholar 

  10. Chinesta, F., Keunings, R., Leygue, A.: The Proper Generalized Decomposition for Advanced Numerical Simulations. SpringerBriefs in Applied Sciences and Technology. Springer (2014)

  11. Crawford, J.D., Knobloch, E.: Symmetry and symmetry-breaking bifurcations in fluid dynamics. Ann. Rev. Fluid Dyn. 23, 341–387 (2021)

    Article  Google Scholar 

  12. Gao, C., Zhang, W., Kou, J., Liu, Y., Ye, Z.: Active control of transonic buffet flow. J. Fluid Mech. 824, 312–351 (2017)

    Article  MathSciNet  Google Scholar 

  13. Golub, G.H., van Loan, G.T.: Matrix Computations. John Hopkins University Press (1996)

  14. Haragus, M., Iooss, G.: Local Bifurcations, Center Manifolds, and Normal Forms in Infinite Dimensional Dynamical Systems. Springer, Berlin (2010)

    MATH  Google Scholar 

  15. https://github.com/LeClaincheVega/HODMD

  16. Jin, Y., Lu, K., Hou, L., Chen, Y.: An adaptive proper orthogonal decomposition method for model order reduction of multi-disc rotor system. J. Sound Vib. 411, 210–231 (2017)

    Article  Google Scholar 

  17. Koopman, B.: Hamiltonian systems and transformations in Hilbert space. Proc. Natl. Acad. Sci. USA 17, 315–318 (1931)

    Article  Google Scholar 

  18. Le Clainche, S., Varas, F., Vega, J.M.: Accelerating reservoir simulations using POD on the fly. Int. J. Numer. Methods Eng. 28, 79–100 (2017)

    Article  MathSciNet  Google Scholar 

  19. Le Clainche, S., Vega, J.M.: Higher order dynamic mode decomposition. SIAM J. Appl. Dyn. Syst. 16, 882–925 (2017)

    Article  MathSciNet  Google Scholar 

  20. Le Clainche, S., Vega, J.M.: Higher order dynamic mode decomposition to identify and extrapolate flow patterns. Phys. Fluids 29, 084102 (2017)

    Article  Google Scholar 

  21. Le Clainche, S., Vega, J.M., Soria, J.: Higher order dynamic mode decomposition of noisy experimental data: the flow structure of a zero-net-mass-flux jet. Exp. Therm. Fluid Sci. 88, 336–353 (2017)

    Article  Google Scholar 

  22. Le Clainche, S., Sastre, F., Vega, J.M., Velázquez, A.: Higher order dynamic mode decomposition applied to post-process a limited amount of noisy PIV data. In: 47th AIAA Fluid Dynamics Conference, Denver, Co, AIAA paper 2017-3304 (2017)

  23. Le Clainche, S., Lorente, L., Vega, J.M.: Wind predictions upstream wind turbines from a LiDAR database. Energies 11, 543–558 (2018)

    Article  Google Scholar 

  24. Le Clainche, S., Vega, J.M.: Analyzing nonlinear dynamics via data-driven dynamic mode decomposition-like methods. Complexity 2018, 6920783 (2018)

    Article  Google Scholar 

  25. Le Clainche, S., Moreno-Ramos, R., Taylor, P., Vega, J.M.: A new robust method to study flight flutter testing. J. Aircr. 56, 336–343 (2019)

    Article  Google Scholar 

  26. LeGresley, P.A., Alonso, J.J.: Investigation of non-linear projection for POD based reduced order models for aerodynamics. In: 39th AIAA Aerospace Sciences Meeting & Exhibit, AIAA Paper 2001-0926 (2001)

  27. Lorenz, E.N.: Deterministic nonperiodic flow. J. Atmos. Sci. 20, 130–141 (1963)

    Article  MathSciNet  Google Scholar 

  28. Lu, K., Zhang, K., Zhang, H., Gu, X., Jin, Y., Zhao, S., Fu, C., Yang, Y.: A Review of Model Order Reduction Methods for Large-Scale Structure Systems. Academic Press/Elsevier (2020)

  29. Luchtenburg, D.M., Noack, B.R., Schlegel, M.: An Introduction to the POD Galerkin Method for Fluid Flows with Analytical Examples and MATLAB Source Codes. Berlin Institute of Technology, Report 01 (2009)

  30. Mezić, I.: Analysis of fluid flows via spectral properties of the Koopman operator. Ann. Rev. Fluid Mech. 45, 357–378 (2013)

    Article  MathSciNet  Google Scholar 

  31. Moreno-Ramos, R., Vega, J.M., Varas, F.: Computationally efficient simulation of unsteady aerodynamics using POD on the fly. Fluid Dyn. Res. 48, 061424 (2016)

    Article  MathSciNet  Google Scholar 

  32. Moreno-Ramos, R., Vega, J.M., Varas, F.: Self adaptive POD based ROM aeroelastic simulations. In: 17th International Forum on Aeroelasticity and Structural Dynamics (IFASD 2017), pp. 1487–1505 (2017)

  33. Moreno-Ramos, R., Vega, J.M., Varas, F.: Self adaptive POD based ROM 3D aeroelastic simulations. In: International Forum on Aeroelasticity and Structural Dynamics (IFASD 2019), pp. 1–15 (2019)

  34. Park, K.H., Jun, S.O., Baek, S.M., Cho, M.H., Yee, K.J., Lee, D.H.: Reduced-order model with an artificial neural network for aerostructural design optimization. J. Aircr. 50, 1106–1116 (2013)

    Article  Google Scholar 

  35. Pinnau, R.: Model reduction via proper orthogonal decomposition. In: Schilders, W.H.A., van der Vorst, H.A., Rommes, J. (eds.) Model Order Reduction: Theory, Research Aspects and Applications, Mathematics in Industry, vol. 13. Springer, Berlin (2008)

    Google Scholar 

  36. Quarteroni, A., Manzoni, A., Negri, F.: Reduced Basis Methods for Partial Differential Equations. Springer, Berlin (2016)

    Book  Google Scholar 

  37. Rapún, M.-L., Vega, J.M.: Reduced order models based on local POD plus Galerkin projection. J. Comput. Phys. 229, 3046–3063 (2010)

    Article  MathSciNet  Google Scholar 

  38. Rapún, M.-L., Terragni, F., Vega, J.M.: Adaptive POD-based low-dimensional modeling supported by residual estimates. Int. J. Numer. Methods Eng. 9, 844–868 (2015)

    Article  MathSciNet  Google Scholar 

  39. Reshotko, E.: Transient growth: a factor in bypass transition. Phys. Fluids 13, 1067 (2001)

    Article  MathSciNet  Google Scholar 

  40. Rowley, C.W., Mezić, I., Bagheri, S., Schlatter, P., Henningson, D.S.: Spectral analysis of nonlinear flows. J. Fluid Mech. 641, 115–127 (2009)

    Article  MathSciNet  Google Scholar 

  41. Schmid, P.J., Henningson, D.S.: Stability and Transition in Fluid Flows. Springer, Berlin (2001)

    Book  Google Scholar 

  42. Schmid, P.J., Sesterhenn, J.L.: Dynamic mode decomposition of numerical and experimental data. In: Bulletin of the American Physical Society, 61st APS Meeting, San Antonio, p. 208 (2008)

  43. Schmid, P.J.: Dynamic mode decomposition of numerical and experimental data. J. Fluid Mech. 656, 5–28 (2010)

    Article  MathSciNet  Google Scholar 

  44. Sharma, A.S., Mezić, I., McKeon, B.J.: Correspondence between Koopman mode decomposition, resolvent mode decomposition, and invariant solutions of the Navier–Stokes equations. Phys. Rev. Fluids 1, 032402 (2016)

    Article  Google Scholar 

  45. Sirovich, L.: Turbulence and the dynamics of coherent structures. Q. Appl. Math. XLV, 561–590 (1987)

    Article  MathSciNet  Google Scholar 

  46. Takens, F.: Detecting strange attractors in turbulence. In: Rand, D.A., Young, L.-S. (eds.) Lecture Notes in Mathematics, pp. 366–381. Springer, Berlin (1981)

    Google Scholar 

  47. Terragni, F., Valero, E., Vega, J.M.: Local POD plus Galerkin projection in the unsteady lid-driven cavity problem. SIAM J. Sci. Comput. 33, 3538–3561 (2011)

    Article  MathSciNet  Google Scholar 

  48. Terragni, F., Vega, J.M.: On the use of POD-based ROMs to analyze bifurcations in some dissipative systems. Phys. D 241, 1393–1405 (2012)

    Article  Google Scholar 

  49. Terragni, F., Vega, J.M.: Construction of bifurcation diagrams using POD on the fly. SIAM J. Appl. Dyn. Syst. 13, 339–365 (2014)

    Article  MathSciNet  Google Scholar 

  50. Tu, J.H., Rowley, C., Luchtemburg, D.M., Brunton, S.L., Kutz, J.N.: On dynamic mode decomposition: theory and applications. J. Comput. Dyn. 1, 391–421 (2014)

    Article  MathSciNet  Google Scholar 

  51. Vega, J.M., Le Clainche, S.: Higher Order Dynamic Mode Decomposition and its Applications. Academic Press/Elsevier (2020)

Download references

Acknowledgements

This research has been supported by the Spanish Ministry of Science, Innovation, and Universities, under Grant TRA2016-75075-R. The authors are indebted to two anonymous referees for several useful comments on an earlier version of the manuscript, which helped to improve the presentation of the results. SLC acknowledges the Grant PID2020-114173RB-I00 funded by MCIN/AEI/10.13039/501100011033.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to José M. Vega.

Ethics declarations

Conflict of interest

The authors declare no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Beltrán, V., Le Clainche, S. & Vega, J.M. An Adaptive Data-Driven Reduced Order Model Based on Higher Order Dynamic Mode Decomposition. J Sci Comput 92, 12 (2022). https://doi.org/10.1007/s10915-022-01855-2

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10915-022-01855-2

Keywords

Navigation