Abstract
Phase-field surfactant model with moving contact lines (PFS-MCL) has been extensively investigated in the study of droplet dynamics on solid surfaces in the presence of surfactants. This model consists of two Cahn–Hilliard type equations, governing the dynamics of interface and surfactant concentration, with the dynamical boundary condition for moving contact lines. Moreover, the total free energy has logarithmic singularity due to Flory–Huggins potential. Based on the convexity of Flory–Huggins potential and the convex splitting technique, we propose a set of unconditionally energy stable and bound-preserving schemes for PFS-MCL model. The proposed schemes are decoupled, uniquely solvable, and mass conservative. These properties are rigorously proved for the first-order fully discrete scheme. In addition, we prove that the second-order fully discrete scheme satisfies all these properties except for the energy stability. We numerically validate the desired properties for both first-order and second-order schemes. We also present numerical results to systematically study the influence of surfactants on contact line dynamics and its parameter dependence. Furthermore, droplet spreading and retracting on chemically patterned surfaces are numerically investigated. It is observed that surfactants can affect contact angle hysteresis by changing advancing/receding contact angles.








Similar content being viewed by others
References
Anna, S.L., Mayer, H.C.: Microscale tipstreaming in a microfluidic flow focusing device. Phys. Fluids 18(12), 121512 (2006)
Liu, H., Zhang, Y.: Phase-field modeling droplet dynamics with soluble surfactants. J. Comput. Phys. 229(24), 9166–9187 (2010)
Probstein, R.F.: Physicochemical Hydrodynamics: An Introduction. Wiley, New York (2005)
Raffa, P., Broekhuis, A.A., Picchioni, F.: Polymeric surfactants for enhanced oil recovery: a review. J. Petrol. Sci. Eng. 145, 723–733 (2016)
Young, T.: An essay on the cohesion of fluids. Philos. Trans. R. Soc. Lond. 95, 65–87 (1805)
Huh, C., Scriven, L.E.: Hydrodynamic model of steady movement of a solid/liquid/fluid contact line. J. Colloid Interface Sci. 35(1), 85–101 (1971)
de Gennes, P.-G.: Wetting: statics and dynamics. Rev. Mod. Phys. 57(3, part 1), 827–863 (1985). https://doi.org/10.1103/RevModPhys.57.827
de Gennes, P.-G., Brochard-Wyart, F., Quéré, D., et al.: Capillarity and Wetting Phenomena: Drops, Bubbles, Pearls, Waves, vol. 315. Springer, New York (2004)
Bonn, D., Eggers, J., Indekeu, J., Meunier, J., Rolley, E.: Wetting and spreading. Rev. Mod. Phys. 81(2), 739 (2009)
Stone, H.A.: A simple derivation of the time-dependent convective–diffusion equation for surfactant transport along a deforming interface. Phys. Fluids A 2(1), 111–112 (1990)
Wong, H., Rumschitzki, D., Maldarelli, C.: On the surfactant mass balance at a deforming fluid interface. Phys. Fluids 8(11), 3203–3204 (1996)
Dunbar, O.R.A., Lam, K.F., Stinner, B.: Phase field modelling of surfactants in multi-phase flow. Interfaces Free Bound. 21(4), 495–547 (2019). https://doi.org/10.4171/ifb/429
Garcke, H., Lam, K.F., Stinner, B.: Diffuse interface modelling of soluble surfactants in two-phase flow. Commun. Math. Sci. 12(8), 1475–1522 (2014). https://doi.org/10.4310/CMS.2014.v12.n8.a6
Chen, K.-Y., Lai, M.-C.: A conservative scheme for solving coupled surface-bulk convection–diffusion equations with an application to interfacial flows with soluble surfactant. J. Comput. Phys. 257(part A), 1–18 (2014). https://doi.org/10.1016/j.jcp.2013.10.003
Dieter-Kissling, K., Marschall, H., Bothe, D.: Direct numerical simulation of droplet formation processes under the influence of soluble surfactant mixtures. Comput. Fluids 113, 93–105 (2015). https://doi.org/10.1016/j.compfluid.2015.01.017
Cleret de Langavant, C., Guittet, A., Theillard, M., Temprano-Coleto, F., Gibou, F.: Level-set simulations of soluble surfactant driven flows. J. Comput. Phys. 348, 271–297 (2017). https://doi.org/10.1016/j.jcp.2017.07.003
Liu, H., Ba, Y., Wu, L., Li, Z., Xi, G., Zhang, Y.: A hybrid lattice Boltzmann and finite difference method for droplet dynamics with insoluble surfactants. J. Fluid Mech. 837, 381–412 (2018). https://doi.org/10.1017/jfm.2017.859
Liu, H., Zhang, J., Ba, Y., Wang, N., Wu, L.: Modelling a surfactant-covered droplet on a solid surface in three-dimensional shear flow. J. Fluid Mech. 897, 33–31 (2020). https://doi.org/10.1017/jfm.2020.416
Zhang, Z., Xu, S., Ren, W.: Derivation of a continuum model and the energy law for moving contact lines with insoluble surfactants. Phys. Fluids 26(6), 062103 (2014)
Zhao, Q., Ren, W., Zhang, Z.: A thermodynamically consistent model and its conservative numerical approximation for moving contact lines with soluble surfactants. Comput. Methods Appl. Mech. Engrg. 385, 114033–28 (2021). https://doi.org/10.1016/j.cma.2021.114033
Zhu, G., Kou, J., Yao, B., Wu, Y.-S., Yao, J., Sun, S.: Thermodynamically consistent modelling of two-phase flows with moving contact line and soluble surfactants. J. Fluid Mech. 879, 327–359 (2019). https://doi.org/10.1017/jfm.2019.664
Xu, J.-J., Ren, W.: A level-set method for two-phase flows with moving contact line and insoluble surfactant. J. Comput. Phys. 263, 71–90 (2014). https://doi.org/10.1016/j.jcp.2014.01.012
af Klinteberg, L., Lindbo, D., Tornberg, A.-K.: An explicit Eulerian method for multiphase flow with contact line dynamics and insoluble surfactant. Comput. Fluids 101, 50–63 (2014). https://doi.org/10.1016/j.compfluid.2014.05.029
Ganesan, S.: Simulations of impinging droplets with surfactant-dependent dynamic contact angle. J. Comput. Phys. 301, 178–200 (2015). https://doi.org/10.1016/j.jcp.2015.08.026
Zhu, G., Kou, J., Yao, J., Li, A., Sun, S.: A phase-field moving contact line model with soluble surfactants. J. Comput. Phys. 405, 109170–29 (2020). https://doi.org/10.1016/j.jcp.2019.109170
van der Sman, R.G.M., van der Graaf, S.: Diffuse interface model of surfactant adsorption onto flat and droplet interfaces. Rheol. Acta 46(1), 3–11 (2006)
Engblom, S., Do-Quang, M., Amberg, G., Tornberg, A.-K.: On diffuse interface modeling and simulation of surfactants in two-phase fluid flow. Commun. Comput. Phys. 14(4), 879–915 (2013). https://doi.org/10.4208/cicp.120712.281212a
Yun, A., Li, Y., Kim, J.: A new phase-field model for a water–oil-surfactant system. Appl. Math. Comput. 229, 422–432 (2014). https://doi.org/10.1016/j.amc.2013.12.054
Zhu, G., Kou, J., Sun, S., Yao, J., Li, A.: Numerical approximation of a phase-field surfactant model with fluid flow. J. Sci. Comput. 80(1), 223–247 (2019). https://doi.org/10.1007/s10915-019-00934-1
Soligo, G., Roccon, A., Soldati, A.: Coalescence of surfactant-laden drops by phase field method. J. Comput. Phys. 376, 1292–1311 (2019). https://doi.org/10.1016/j.jcp.2018.10.021
Eyre, D.J.: Unconditionally gradient stable time marching the Cahn–Hilliard equation. In: Computational and Mathematical Models of Microstructural Evolution (San Francisco, CA, 1998). Materials Research Society Symposium Proceedings, vol. 529, pp. 39–46. MRS, Warrendale, PA, San Francisco (1998). https://doi.org/10.1557/PROC-529-39
Gu, S., Zhang, H., Zhang, Z.: An energy-stable finite-difference scheme for the binary fluid–surfactant system. J. Comput. Phys. 270, 416–431 (2014). https://doi.org/10.1016/j.jcp.2014.03.060
Chen, L.Q., Shen, J.: Applications of semi-implicit Fourier-spectral method to phase field equations. Comput. Phys. Commun. 108(2–3), 147–158 (1998)
Xu, C., Tang, T.: Stability analysis of large time-stepping methods for epitaxial growth models. SIAM J. Numer. Anal. 44(4), 1759–1779 (2006). https://doi.org/10.1137/050628143
Yang, X.: Error analysis of stabilized semi-implicit method of Allen–Cahn equation. Discrete Contin. Dyn. Syst. Ser. B 11(4), 1057–1070 (2009). https://doi.org/10.3934/dcdsb.2009.11.1057
Badia, S., Guillén-González, F., Gutiérrez-Santacreu, J.V.: Finite element approximation of nematic liquid crystal flows using a saddle-point structure. J. Comput. Phys. 230(4), 1686–1706 (2011). https://doi.org/10.1016/j.jcp.2010.11.033
Yang, X.: Linear, first and second-order, unconditionally energy stable numerical schemes for the phase field model of homopolymer blends. J. Comput. Phys. 327, 294–316 (2016). https://doi.org/10.1016/j.jcp.2016.09.029
Zhao, J., Wang, Q., Yang, X.: Numerical approximations for a phase field dendritic crystal growth model based on the invariant energy quadratization approach. Int. J. Numer. Methods Eng. 110(3), 279–300 (2017). https://doi.org/10.1002/nme.5372
Han, D., Brylev, A., Yang, X., Tan, Z.: Numerical analysis of second order, fully discrete energy stable schemes for phase field models of two-phase incompressible flows. J. Sci. Comput. 70(3), 965–989 (2017). https://doi.org/10.1007/s10915-016-0279-5
Chen, C., Pan, K., Yang, X.: Numerical approximations of a hydro-dynamically coupled phase-field model for binary mixture of passive/active nematic liquid crystals and viscous fluids. Appl. Numer. Math. 158, 1–21 (2020). https://doi.org/10.1016/j.apnum.2020.07.014
Yang, X., Ju, L.: Linear and unconditionally energy stable schemes for the binary fluid–surfactant phase field model. Comput. Methods Appl. Mech. Eng. 318, 1005–1029 (2017). https://doi.org/10.1016/j.cma.2017.02.011
Xu, C., Chen, C., Yang, X., He, X.: Numerical approximations for the hydrodynamics coupled binary surfactant phase field model: second-order, linear, unconditionally energy stable schemes. Commun. Math. Sci. 17(3), 835–858 (2019). https://doi.org/10.4310/CMS.2019.v17.n3.a10
Yang, X., Yu, H.: Efficient second order unconditionally stable schemes for a phase field moving contact line model using an invariant energy quadratization approach. SIAM J. Sci. Comput. 40(3), 889–914 (2018). https://doi.org/10.1137/17M1125005
Shen, J., Xu, J., Yang, J.: The scalar auxiliary variable (SAV) approach for gradient flows. J. Comput. Phys. 353, 407–416 (2018). https://doi.org/10.1016/j.jcp.2017.10.021
Shen, J., Xu, J., Yang, J.: A new class of efficient and robust energy stable schemes for gradient flows. SIAM Rev. 61(3), 474–506 (2019). https://doi.org/10.1137/17M1150153
Shen, J., Xu, J.: Convergence and error analysis for the scalar auxiliary variable (SAV) schemes to gradient flows. SIAM J. Numer. Anal. 56(5), 2895–2912 (2018). https://doi.org/10.1137/17M1159968
Qin, Y., Xu, Z., Zhang, H., Zhang, Z.: Fully decoupled, linear and unconditionally energy stable schemes for the binary fluid–surfactant model. Commun. Comput. Phys. 28(4), 1389–1414 (2020). https://doi.org/10.4208/cicp.oa-2019-0175
Yang, J., Kim, J.: An improved scalar auxiliary variable (SAV) approach for the phase-field surfactant model. Appl. Math. Model. 90, 11–29 (2021). https://doi.org/10.1016/j.apm.2020.08.045
Cheng, Q., Liu, C., Shen, J.: A new Lagrange multiplier approach for gradient flows. Comput. Methods Appl. Mech. Eng. 367, 113070–20 (2020). https://doi.org/10.1016/j.cma.2020.113070
Huang, F., Shen, J., Yang, Z.: A highly efficient and accurate new scalar auxiliary variable approach for gradient flows. SIAM J. Sci. Comput. 42(4), 2514–2536 (2020). https://doi.org/10.1137/19M1298627
Yang, X.: A novel fully-decoupled, second-order and energy stable numerical scheme of the conserved Allen–Cahn type flow-coupled binary surfactant model. Comput. Methods Appl. Mech. Engrg. 373, 113502–26 (2021). https://doi.org/10.1016/j.cma.2020.113502
Hong, Q., Li, J., Wang, Q.: Supplementary variable method for structure-preserving approximations to partial differential equations with deduced equations. Appl. Math. Lett. 110, 106576–9 (2020). https://doi.org/10.1016/j.aml.2020.106576
Du, Q., Nicolaides, R.A.: Numerical analysis of a continuum model of phase transition. SIAM J. Numer. Anal. 28(5), 1310–1322 (1991). https://doi.org/10.1137/0728069
Du, Q., Ju, L., Li, X., Qiao, Z.: Maximum bound principles for a class of semilinear parabolic equations and exponential time-differencing schemes. SIAM Rev. 63(2), 317–359 (2021). https://doi.org/10.1137/19M1243750
Gao, M., Wang, X.-P.: A gradient stable scheme for a phase field model for the moving contact line problem. J. Comput. Phys. 231(4), 1372–1386 (2012). https://doi.org/10.1016/j.jcp.2011.10.015
Shen, J., Yang, X., Yu, H.: Efficient energy stable numerical schemes for a phase field moving contact line model. J. Comput. Phys. 284, 617–630 (2015). https://doi.org/10.1016/j.jcp.2014.12.046
Kang, F., Zhang, Z.: A multiple scalar auxiliary variables approach to the energy stable scheme of the moving contact line problem. Numer. Math. Theory Methods Appl. 13(2), 539–568 (2020). https://doi.org/10.4208/nmtma
Zhu, G., Kou, J., Sun, S., Yao, J., Li, A.: Decoupled, energy stable schemes for a phase-field surfactant model. Comput. Phys. Commun. 233, 67–77 (2018). https://doi.org/10.1016/j.cpc.2018.07.003
Chen, W., Wang, C., Wang, X., Wise, S.M.: Positivity-preserving, energy stable numerical schemes for the Cahn–Hilliard equation with logarithmic potential. J. Comput. Phys. X 3, 100031–29 (2019). https://doi.org/10.1016/j.jcpx.2019.100031
Dong, L., Wang, C., Wise, S.M., Zhang, Z.: A positivity-preserving, energy stable scheme for a ternary Cahn–Hilliard system with the singular interfacial parameters. J. Comput. Phys. 442, 110451–29 (2021). https://doi.org/10.1016/j.jcp.2021.110451
Yuan, M., Chen, W., Wang, C., Wise, S.M., Zhang, Z.: An energy stable finite element scheme for the three-component Cahn–Hilliard-type model for macromolecular microsphere composite hydrogels. J. Sci. Comput. 87(3), 1–30 (2021). https://doi.org/10.1007/s10915-021-01508-w
Liu, C., Wang, C., Wise, S.M., Yue, X., Zhou, S.: A positivity-preserving, energy stable and convergent numerical scheme for the Poisson–Nernst–Planck system. Math. Comp. 90(331), 2071–2106 (2021). https://doi.org/10.1090/mcom/3642
Shen, J., Xu, J.: Unconditionally positivity preserving and energy dissipative schemes for Poisson–Nernst–Planck equations. Numer. Math. 148(3), 671–697 (2021). https://doi.org/10.1007/s00211-021-01203-w
He, D., Pan, K., Yue, X.: A positivity preserving and free energy dissipative difference scheme for the Poisson–Nernst–Planck system. J. Sci. Comput. 81(1), 436–458 (2019). https://doi.org/10.1007/s10915-019-01025-x
Jin, S., Wang, L.: An asymptotic preserving scheme for the Vlasov–Poisson–Fokker–Planck system in the high field regime. Acta Math. Sci. Ser. B (Engl. Ed.) 31(6, [November 2010 on cover]), 2219–2232 (2011). https://doi.org/10.1016/S0252-9602(11)60395-0
Liu, J.-G., Wang, L., Zhou, Z.: Positivity-preserving and asymptotic preserving method for 2D Keller–Segal equations. Math. Comput. 87(311), 1165–1189 (2018). https://doi.org/10.1090/mcom/3250
Li, B., Yang, J., Zhou, Z.: Arbitrarily high-order exponential cut-off methods for preserving maximum principle of parabolic equations. SIAM J. Sci. Comput. 42(6), 3957–3978 (2020). https://doi.org/10.1137/20M1333456
Gu, Y., Shen, J.: Bound preserving and energy dissipative schemes for porous medium equation. J. Comput. Phys. 410, 109378–21 (2020). https://doi.org/10.1016/j.jcp.2020.109378
van der Vegt, J.J.W., Xia, Y., Xu, Y.: Positivity preserving limiters for time-implicit higher order accurate discontinuous Galerkin discretizations. SIAM J. Sci. Comput. 41(3), 2037–2063 (2019). https://doi.org/10.1137/18M1227998
Huang, F., Shen, J.: Bound/positivity preserving and energy stable scalar auxiliary variable schemes for dissipative systems: applications to Keller-Segel and Poisson-Nernst-Planck equations. SIAM J. Sci. Comput. 43(3), 1832–1857 (2021). https://doi.org/10.1137/20M1365417
Villani, C.: Topics in Optimal Transportation. Graduate Studies in Mathematics, vol. 58, p. 370. American Mathematical Society, Providence (2003). https://doi.org/10.1090/gsm/058
Li, W., Ying, L.: Hessian transport gradient flows. Res. Math. Sci. 6(4), 34–20 (2019). https://doi.org/10.1007/s40687-019-0198-9
Qian, T., Wang, X.-P., Sheng, P.: Molecular scale contact line hydrodynamics of immiscible flows. Phys. Rev. E 68(1), 016306 (2003)
Xu, X., Di, Y., Yu, H.: Sharp-interface limits of a phase-field model with a generalized Navier slip boundary condition for moving contact lines. J. Fluid Mech. 849, 805–833 (2018). https://doi.org/10.1017/jfm.2018.428
Nauman, E.B., He, D.Q.: Nonlinear diffusion and phase separation. Chem. Eng. Sci. 56(6), 1999–2018 (2001)
Wang, S., Zhou, S., Shi, S., Chen, W.: Fully decoupled and energy stable BDF schemes for a class of Keller–Segel equations. J. Comput. Phys. 449, 110799 (2022). https://doi.org/10.1016/j.jcp.2021.110799
Brandon, S., Marmur, A.: Simulation of contact angle hysteresis on chemically heterogeneous surfaces. J. Colloid Interface Sci. 183(2), 351–355 (1996)
Wang, X.-P., Qian, T., Sheng, P.: Moving contact line on chemically patterned surfaces. J. Fluid Mech. 605, 59–78 (2008). https://doi.org/10.1017/S0022112008001456
Zhong, H., Wang, X.-P., Sun, S.: A numerical study of three-dimensional droplets spreading on chemically patterned surfaces. Discrete Contin. Dyn. Syst. Ser. B 21(8), 2905–2926 (2016). https://doi.org/10.3934/dcdsb.2016079
Chai, S., Zhang, Z., Zhang, Z.: A second order accuracy preserving method for moving contact lines with stokes flow. J. Comput. Phys. 445, 110607 (2021)
Acknowledgements
The authors gratefully acknowledge many helpful discussions with Jie Shen and Jie Xu during the preparation of the paper. The authors would also like to dedicate this paper to Hui Zhang for his departure. The work of Zhen Zhang was partially supported by the NSFC Grant (No. 11731006) and (No. 12071207), NSFC Tianyuan-Pazhou grant (No. 12126602), the Guangdong Basic and Applied Basic Research Foundation (2021A1515010359) and the Guangdong Provincial Key Laboratory of Computational Science and Material Design (No. 2019B030301001).
Author information
Authors and Affiliations
Corresponding author
Ethics declarations
Conflict of interest
The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.
Additional information
Publisher's Note
Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
Rights and permissions
About this article
Cite this article
Wang, C., Guo, Y. & Zhang, Z. Unconditionally Energy Stable and Bound-Preserving Schemes for Phase-Field Surfactant Model with Moving Contact Lines. J Sci Comput 92, 20 (2022). https://doi.org/10.1007/s10915-022-01863-2
Received:
Revised:
Accepted:
Published:
DOI: https://doi.org/10.1007/s10915-022-01863-2