Skip to main content
Log in

Entropy Stable Galerkin Methods with Suitable Quadrature Rules for Hyperbolic Systems with Random Inputs

  • Published:
Journal of Scientific Computing Aims and scope Submit manuscript

Abstract

In this paper, we investigate hyperbolic systems with random inputs based on generalized polynomial chaos (gPC) approximations, which is one of the most popular methods for uncertainty quantification (UQ) and can be implemented with either the stochastic Galerkin (SG) method or the stochastic collocation (SC) method. One of the challenges for solving stochastic hyperbolic systems with the SG method is that the resulting deterministic system may not be hyperbolic. The lack of hyperbolicity may lead to the ill-posedness of the problem and the instability of numerical simulations. The main objective of this paper is to show that by approximating the solution in the random space with the SG method in a pseudo-spectral way with suitable quadrature rules, the SG scheme can be written as a SC scheme on a set of specific nodes. The resulting collocation scheme preserves the hyperbolicity of the original hyperbolic system, and is more efficient to implement. On the other hand, entropy conditions play an essential role in the well-posedness of hyperbolic conservation laws. Thus we approximate the resulted collocation scheme in space by the entropy stable nodal discontinuous Galerkin (DG) method Chen and Shu (J. Comput. Phys. 345:427-461, 2017), where the entropy stability is guaranteed by high order summation-by-parts operators, entropy conservative fluxes and entropy stable fluxes. Numerical experiments are performed to validate the accuracy and effectiveness of the proposed numerical red schemes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16

Similar content being viewed by others

Data Availability

Data sharing not applicable to this article as no datasets were generated or analysed during the current study.

References

  1. Babuska, I., Nobile, F., Tempone, R.: A stochastic collocation method for elliptic partial differential equations with random input data. SIAM J. Numer. Anal. 45(3), 1005–1034 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  2. Chandrashekar, P.: Kinetic energy preserving and entropy stable finite volume schemes for compressible Euler and Navier-Stokes equations. Commun. Comput. Phys. 14(5), 1252–1286 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  3. Chen, Q.-Y., Gottlieb, D., Hesthaven, J.S.: Uncertainty analysis for the steady-state flows in a dual throat nozzle. J. Comput. Phys. 204(1), 378–398 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  4. Chen, T., Shu, C.-W.: Entropy stable high order discontinuous Galerkin methods with suitable quadrature rules for hyperbolic conservation laws. J. Comput. Phys. 345, 427–461 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  5. Chertock, A., Jin, S., Kurganov, A.: An operator splitting based stochastic Galerkin method for the one-dimensional compressible Euler equations with uncertainty. preprint (2015). Available at https://chertock.wordpress.ncsu.edu/publications/

  6. Chertock, A., Jin, S., Kurganov, A.: A well-balanced operator splitting based stochastic Galerkin method for the one-dimensional Saint-Venant system with uncertainty. preprint (2015)

  7. Cockburn, B., Shu, C.-W.: The Runge-Kutta discontinuous Galerkin method for conservation laws V: multidimensional systems. J. Comput. Phys. 141(2), 199–224 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  8. Cockburn, B., Shu, C.-W.: Runge-Kutta discontinuous Galerkin methods for convection-dominated problems. J. Sci. Comput. 16(3), 173–261 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  9. Dai, D., Epshteyn, Y., Narayan, A.: Hyperbolicity-preserving and well-balanced stochastic Galerkin method for shallow water equations. SIAM J. Sci. Comput. 43(2), A929–A952 (2021)

    Article  MathSciNet  MATH  Google Scholar 

  10. Dai, D., Epshteyn, Y., Narayan, A.: Hyperbolicity-preserving and well-balanced stochastic Galerkin method for two-dimensional shallow water equations. J. Comput. Phys. 452, 110901 (2022)

    Article  MathSciNet  MATH  Google Scholar 

  11. Després, B., Poëtte, G., Lucor, D.: Robust uncertainty propagation in systems of conservation laws with the entropy closure method. In: Bijl, H., Lucor, D., Mishra, S., Schwab, C. (eds.) Uncertainty Quantification in Computational Fluid Dynamics. Lecture Notes in Computational Science and Engineering, pp. 105–149. Springer International Publishing, Cham (2013)

    MATH  Google Scholar 

  12. Dürrwächter, J., Kuhn, T., Meyer, F., Schlachter, L., Schneider, F.: A hyperbolicity-preserving discontinuous stochastic Galerkin scheme for uncertain hyperbolic systems of equations. J. Comput. Appl. Math. 370, 112602 (2020)

    Article  MathSciNet  MATH  Google Scholar 

  13. Funaro, D.: Polynomial Approximation of Differential Equations. Number 8 in Lecture Notes in Physics. Springer-Verlag, Berlin Heidelberg (1992)

  14. Gao, Z., Zhou, T.: On the Choice of Design Points for least square polynomial approximations with application to uncertainty quantification. Commun. Comput. Phys. 16(2), 365–381 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  15. Gerster, S., Herty, M.: Entropies and symmetrization of hyperbolic stochastic Galerkin formulations. Commun. Comput. Phys. 27(3), 639–671 (2020)

    Article  MathSciNet  MATH  Google Scholar 

  16. Gerster, S., Herty, M., Sikstel, A.: Hyperbolic stochastic Galerkin formulation for the p-system. J. Comput. Phys. 395, 186–204 (2019)

    Article  MathSciNet  MATH  Google Scholar 

  17. Ghanem, R.G., Spanos, P.D.: Stochastic Finite Elements: A Spectral Approach. Springer, New York (1991)

    Book  MATH  Google Scholar 

  18. Giesselmann, J., Meyer, F., Rohde, C.: A posteriori error analysis and adaptive non-intrusive numerical schemes for systems of random conservation laws. BIT Numer. Math. 60(3), 619–649 (2020)

    Article  MathSciNet  MATH  Google Scholar 

  19. Godlewski, E., Raviart, P.-A.: Numerical approximation of hyperbolic systems of conservation laws. Number 118 in Applied mathematical sciences. Springer Nature, New York, NY, second edition edition (2021)

  20. Godunov, S.K.: An interesting class of quasilinear systems. Dokl. Acad. Nauk SSSR 139, 521–523 (1961)

    MATH  Google Scholar 

  21. Gottlieb, D., Orszag, S. A.: Numerical Analysis of Spectral Methods: Theory and Applications. Number CB26 in CBMS-NSF Regional Conference Series in Applied Mathematics. Society for Industrial and Applied Mathematics, Philadelphia (1977)

  22. Gottlieb, D., Xiu, D.: Galerkin method for wave equations with uncertain coefficients. Commun. Comput. Phys 3(2), 505–518 (2008)

    MathSciNet  MATH  Google Scholar 

  23. Guo, L., Narayan, A., Zhou, T., Chen, Y.: Stochastic collocation methods via \({\ell }_1\) minimization using randomized quadratures. SIAM J. Sci. Comput. 39(1), A333–A359 (2017)

    Article  MATH  Google Scholar 

  24. Gustafsson, B., Kreiss, H., Oliger, J.: Time dependent problems and difference methods. Pure and Applied Mathematics. John Wiley & Sons Inc, Hoboken, New Jersey (2013)

    Book  MATH  Google Scholar 

  25. Hesthaven, J.S., Gottlieb, S., Gottlieb, D.: Spectral Methods for Time-Dependent Problems. Cambridge Monographs on Applied and Computational Mathematics. Cambridge University Press, Cambridge (2007)

    Book  MATH  Google Scholar 

  26. Ismail, F., Roe, P.L.: Affordable, entropy-consistent Euler flux functions II: Entropy production at shocks. J. Comput. Phys. 228(15), 5410–5436 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  27. Jin, S., Shu, R.: A study of hyperbolicity of kinetic stochastic Galerkin system for the isentropic Euler equations with uncertainty. Chin. Ann. Math. Ser. B. 40(5), 765–780 (2019)

    Article  MathSciNet  MATH  Google Scholar 

  28. Jin, S., Xiu, D., Zhu, X.: A well-balanced stochastic Galerkin method for scalar hyperbolic balance laws with random inputs. J. Sci. Comput. 67, 1198–1218 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  29. Le Maıtre, O.P., Reagan, M.T., Najm, H.N., Ghanem, R.G., Knio, O.M.: A stochastic projection method for fluid flow: II. Random process. J. Comput. Phys. 181(1), 9–44 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  30. LeVeque, R.J.: Numerical Methods for Conservation Laws. Birkhäuser Verlag, Basel (1990)

    Book  MATH  Google Scholar 

  31. Mathelin, L., Hussaini, M.Y.: A stochastic collocation algorithm for uncertainty analysis. Technical Report NASA/CR-2003-212153, NASA Langley Research Center, Langley, Virginia (2003)

    MATH  Google Scholar 

  32. Mock, M.: Systems of conservation laws of mixed type. J. Differential Equations 37(1), 70–88 (1980)

    Article  MathSciNet  MATH  Google Scholar 

  33. Nobile, F., Tempone, R., Webster, C.G.: A sparse grid stochastic collocation method for partial differential equations with random input data. SIAM J. Numer. Anal. 46(5), 2309–2345 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  34. Pettersson, P., Iaccarino, G., Nordström, J.: A stochastic Galerkin method for the Euler equations with Roe variable transformation. J. Comput. Phys. 257, 481–500 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  35. Poëtte, G., Després, B., Lucor, D.: Uncertainty quantification for systems of conservation laws. J. Comput. Phys. 228(7), 2443–2467 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  36. Pulch, R., Xiu, D.: Generalised polynomial chaos for a class of linear conservation laws. J. Sci. Comput. 51(2), 293–312 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  37. Schlachter, L., Schneider, F.: A hyperbolicity-preserving stochastic Galerkin approximation for uncertain hyperbolic systems of equations. J. Comput. Phys. 375, 80–98 (2018)

    Article  MathSciNet  MATH  Google Scholar 

  38. Schneider, F., Schlachter, L.: Hyperbolicity-preserving stochastic Galerkin method for hyperbolic systems with uncertainties. PAMM 18(1), e201800160 (2018)

    Article  Google Scholar 

  39. Shu, C.-W., Osher, S.: Efficient implementation of essentially non-oscillatory shock-capturing schemes. J. Comput. Phys. 77(2), 439–471 (1988)

    Article  MathSciNet  MATH  Google Scholar 

  40. Smolyak, S.: Quadrature and interpolation formulas for tensor products of certain classes of functions. Soviet Math. Dokl. 4, 240–243 (1963)

    MATH  Google Scholar 

  41. Sod, G.: A survey of several finite difference methods for systems of nonlinear hyperbolic conservation laws. J. Comput. Phys. 27, 1–31 (1978)

    Article  MathSciNet  MATH  Google Scholar 

  42. Tadmor, E.: The numerical viscosity of entropy stable schemes for systems of conservation laws. I. Math. Comput. 49(179), 91–103 (1987)

    Article  MathSciNet  MATH  Google Scholar 

  43. Tadmor, E.: Entropy stability theory for difference approximations of nonlinear conservation laws and related time-dependent problems. Acta Numer 12, 451–512 (2003). (Publisher: Cambridge University Press)

    Article  MathSciNet  MATH  Google Scholar 

  44. Tang, T., Zhou, T.: Convergence analysis for stochastic collocation methods to scalar hyperbolic equations with a random wave speed. Commun. Comput. Phys. 8(1), 226–248 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  45. Tatang, M.A., Pan, W., Prinn, R.G., McRae, G.J.: An efficient method for parametric uncertainty analysis of numerical geophysical models. J. Geophys. Res.: Atmos. 102(D18), 21925–21932 (1997)

    Article  Google Scholar 

  46. Tryoen, J., Maître, O.L., Ndjinga, M., Ern, A.: Intrusive Galerkin methods with upwinding for uncertain nonlinear hyperbolic systems. J. Comput. Phys. 229(18), 6485–6511 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  47. Wiener, N.: The Homogeneous Chaos. Am. J. Math. 60(4), 897–936 (1938)

    Article  MathSciNet  MATH  Google Scholar 

  48. Wu, K., Tang, H., Xiu, D.: A stochastic Galerkin method for first-order quasilinear hyperbolic systems with uncertainty. J. Comput. Phys. 345, 224–244 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  49. Wu, K., Xiu, D., Zhong, X.: A WENO-based stochastic Galerkin scheme for ideal MHD equations with random inputs. Commun. Comput. Phys. 30(2), 423–447 (2021)

    Article  MathSciNet  MATH  Google Scholar 

  50. Xiu, D.: Efficient collocational approach for parametric uncertainty analysis. Commun. Comput. Phys. 2(2), 293–309 (2007)

    MathSciNet  MATH  Google Scholar 

  51. Xiu, D.: Fast numerical methods for stochastic computations: a review. Commun. Comput. Phys. 5, 242–272 (2009)

    MathSciNet  MATH  Google Scholar 

  52. Xiu, D.: Numerical Methods for Stochastic Computations: a Spectral Method Approach. Princeton University Press, New Jersey (2010)

    Book  MATH  Google Scholar 

  53. Xiu, D., Hesthaven, J.S.: High-order collocation methods for differential equations with random inputs. SIAM J. Sci. Comput. 27(3), 1118–1139 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  54. Xiu, D., Karniadakis, G.: The Wiener-Askey polynomial chaos for stochastic differential equations. SIAM J. Sci. Comput. 24(2), 619–644 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  55. Xu, Z., Zhou, T.: On sparse interpolation and the design of deterministic interpolation points. SIAM J. Sci. Comput. 36(4), A1752–A1769 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  56. Zhang, X., Shu, C.-W.: On maximum-principle-satisfying high order schemes for scalar conservation laws. J. Comput. Phys. 229(9), 3091–3120 (2010)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Acknowledgements

X. Zhong was partially supported by the National Natural Science Foundation of China (NSFC) (Grant No. 11871428). C.-W. Shu was partially supported by NSF grant DMS-2010107 and AFOSR grant FA9550-20-1-0055. The authors would like to thank Dr. Tianheng Chen for many helpful discussions in the computation.

Funding

Author X. Zhong was partially supported by the National Natural Science Foundation of China (NSFC) (Grant No. 11871428). Author C.-W. Shu was partially supported by NSF grant DMS-2010107 and AFOSR grant FA9550-20-1-0055.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xinghui Zhong.

Ethics declarations

Conflict of interest

Both authors have no relevant financial or non-financial interests to disclose.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhong, X., Shu, CW. Entropy Stable Galerkin Methods with Suitable Quadrature Rules for Hyperbolic Systems with Random Inputs. J Sci Comput 92, 14 (2022). https://doi.org/10.1007/s10915-022-01866-z

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10915-022-01866-z

Keywords

Navigation