Skip to main content
Log in

An Adaptive Generalized Multiscale Finite Element Method Based Two-Grid Preconditioner for Large Scale High-Contrast Linear Elasticity Problems

  • Published:
Journal of Scientific Computing Aims and scope Submit manuscript

Abstract

In this paper, we propose an efficient and robust two-grid preconditioner for the linear elasticity equation with high contrasts. To tackle the challenges imposed by multiple scales and high-contrast, a coarse space (to form the coarse preconditioner) is constructed via a carefully designed spectral problem within the framework of the GMsFEM (Generalized Multiscale Finite Element Method). The dimension of coarse space can be adaptively controlled by a predefined eigenvalue tolerance. We also consider linear elasticity problems with stochastic coefficients and an efficient preconditioner with parameter-independent multiscale basis is proposed. The logarithm of Young’s modulus is decomposed using a truncated Karhunen–Lo\(\grave{e}\)ve expansion, and some sample parameters are used to generate the multiscale basis. Numerical results of both 2D and 3D examples demonstrate that our proposed preconditioner is robust with respect to the contrast of the material and highly efficient for large-scale elasticity problems.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

Data availibility

Enquiries about data availability should be directed to the authors.

References

  1. Andreassen, E., Clausen, A., Schevenels, M., Lazarov, B.S., Sigmund, O.: Efficient topology optimization in matlab using 88 lines of code. Struct. Multidiscip. Opt. 43(1), 1–16 (2011)

    Article  Google Scholar 

  2. Arbogast, T., Xiao, H.: Two-level mortar domain decomposition preconditioners for heterogeneous elliptic problems. Comput. Method. Appl. Mech. Eng. 292, 221–242 (2015)

    Article  MathSciNet  Google Scholar 

  3. Mary, F., Wheeler, B., Tim Wildey, B., Ivan, Y.A.: A multiscale preconditioner for stochastic mortar mixed finite elements. Comput. Methods Appl. Mech. Eng. 200, 1251–1262 (2011)

    Article  MathSciNet  Google Scholar 

  4. Buck, M., Iliev, O., Andr, Heiko: Multiscale finite element coarse spaces for the application to linear elasticity. Cent. Eur. J. Math. 11(4), 680–701 (2013)

    MathSciNet  MATH  Google Scholar 

  5. Buck, M., Iliev, O., Andra, Heiko: Multiscale Coarsening for Linear Elasticity by Energy Minimization. Springer, New York (2013)

    Book  Google Scholar 

  6. Buck, M., Iliev, Oleg, Andra, H.: Multiscale finite element coarse spaces for the application to linear elasticity. Cent. Eur. J. Math. 11(4), 680–701 (2013)

    MathSciNet  MATH  Google Scholar 

  7. Buck, M., Iliev, Oleg, Andra, H.: Multiscale finite elements for linear elasticity: oscillatory boundary conditions. Lect. Notes Comput. Sci. Eng. 98, 237–245 (2014)

    Article  MathSciNet  Google Scholar 

  8. Buck, M., Iliev, O., Andra, H.: Domain decomposition preconditioners for multiscale problems in linear elasticity. Numer. Linear Algeb. Appl. 25(5), e2171 (2018)

    Article  MathSciNet  Google Scholar 

  9. Calvo, J.G., Widlund, Olof B.: An adaptive choice of primal constraints for BDDC domain decomposition algorithms. Electron. Trans. Numer. Anal. 45, 524–544 (2016)

    MathSciNet  MATH  Google Scholar 

  10. Chung, E., Efendiev, Y., Lee, C.: Mixed generalized multiscale finite element methods and applications. Multiscale Model. Simul. 13(1), 338–366 (2015)

    Article  MathSciNet  Google Scholar 

  11. Chung, E.T., Efendiev, Y., Fu, Shubin: Generalized multiscale finite element method for elasticity equations. GEM-Int. J. Geomath. 5(2), 225–254 (2014)

    Article  MathSciNet  Google Scholar 

  12. Dean, W.R., Muskhelishvili, N.I., Radok, J.R.M.: Some basic problems of the mathematical theory of elasticity. Math. Gaz. 39(330), 352 (1955)

    Article  Google Scholar 

  13. Dolean, V., Nataf, F., Scheichl, R., Spillane, N.: Analysis of a two-level Schwarz method with coarse spaces based on local dirichlet-to-neumann maps. Comput. Methods Appl. Math. 12(4), 391–414 (2012)

    Article  MathSciNet  Google Scholar 

  14. Efendiev, Y., Ginting, V., Hou, T., Ewing, R.: Accurate multiscale finite element methods for two-phase flow simulations. J. Comput. Phys. 220(1), 155–174 (2006)

    Article  MathSciNet  Google Scholar 

  15. Efendiev, Y., Galvis, J., Hou, Thomas Y.: Generalized multiscale finite element methods (GMsFEM). J. Comput. Phys. 251, 116–135 (2013)

    Article  MathSciNet  Google Scholar 

  16. Efendiev, Y., Galvis, J., Lazarov, R., Willems, Joerg: Robust domain decomposition preconditioners for abstract symmetric positive definite bilinear forms. ESAIM Math. Model. Numer. Anal. 46(5), 1175–1199 (2012)

    Article  MathSciNet  Google Scholar 

  17. Efendiev, Y., Galvis, J., Vassilevski, P.S.: Spectral element agglomerate algebraic multigrid methods for elliptic problems with high-contrast coefficients. In: Domain Decomposition Methods in Science and Engineering XIX, pp. 407–414. Springer, (2011)

  18. Ewing, R., Iliev, O., Lazarov, R., Rybak, I., Willems, Joerg: A simplified method for upscaling composite materials with high contrast of the conductivity. SIAM J. Sci. Comput. 31(4), 2568–2586 (2009)

    Article  MathSciNet  Google Scholar 

  19. Galvis, J., Efendiev, Yalchin: Domain decomposition preconditioners for multiscale flows in high-contrast media. Multiscale Model. Simul. 8(4), 1461–1483 (2010)

    Article  MathSciNet  Google Scholar 

  20. Galvis, J., Efendiev, Yalchin: Domain decomposition preconditioners for multiscale flows in high contrast media: reduced dimension coarse spaces. Multiscale Model. Simul. 8(5), 1621–1644 (2010)

    Article  MathSciNet  Google Scholar 

  21. Gander, M.J., Loneland, A.: Shem: an optimal coarse space for ras and its multiscale approximation. In: Domain decomposition methods in science and engineering XXIII, pp. 313–321. Springer, (2017)

  22. Gibson, R.L., Jr., Gao, K., Chung, E., Efendiev, Y.: Multiscale modeling of acoustic wave propagation in 2D media. Geophysics 79(2), T61–T75 (2014)

    Article  Google Scholar 

  23. Griebel, M., Oeltz, D., Schweitzer, Alexander: An algebraic multigrid method for linear elasticity. SIAM J. Sci. Comput. 25(2), 385–407 (2003)

    Article  MathSciNet  Google Scholar 

  24. Gustafsson, I., Lindskog, G.: On parallel solution of linear elasticity problems. Part I: theory. Numer. Linear Algebra Appl. 5(2), 123–139 (1998)

    Article  MathSciNet  Google Scholar 

  25. Gustafsson, I., Lindskog, G.: On parallel solution of linear elasticity problems. Part II: methods and some computer experiments. Numer. Linear Algebra Appl. 9(3), 205–221 (2002)

    Article  MathSciNet  Google Scholar 

  26. Alexandersen, J., Lazarov, B.S.: Topology optimisation of manufacturable microstructural details without length scale separation using a spectral coarse basis preconditioner. Comput. Methods Appl. Mech. Eng. 290, 156–182 (2015)

    Article  MathSciNet  Google Scholar 

  27. Kim, H.H., Chung, E., Wang, Junxian: BDDC and FETI-DP algorithms with a change of basis formulation on adaptive primal constraints. Electron. Trans. Numer. Anal. 49, 64–80 (2018)

    Article  MathSciNet  Google Scholar 

  28. Klawonn, A., Radtke, P., Rheinbach, O.: FETI-DP methods with an adaptive coarse space. SIAM J. Numer. Anal. 53(1), 297–320 (2015)

    Article  MathSciNet  Google Scholar 

  29. Lazarov, B.S.: Topology optimization using multiscale finite element method for high-contrast media. In: International Conference on Large-Scale Scientific Computing, (2013)

  30. Liu, G. R., Zaw, K., Wang, Y. Y., Deng, B.: A novel reduced-basis method with upper and lower bounds for real-time computation of linear elasticity problems. Comput. Methods Appl. Mech. Eng. 198(2), 269–279 (2008)

    Article  MathSciNet  Google Scholar 

  31. Lo\(\grave{e}\)ve. M.: Probability theory(4th ed). Springer Berlin Heidelberg, (1977)

  32. Margenov, S., Vutov, Yavor: Parallel MIC(0) Preconditioning for Numerical Upscaling of Anisotropic Linear Elastic Materials. Springer, Berlin Heidelberg (2010)

    Book  Google Scholar 

  33. Milani, R., Quarteroni, A., Rozza, Gianluigi: Reduced basis method for linear elasticity problems with many parameters. Comput. Methods Appl. Mech. Eng. 197(51–52), 4812–4829 (2008)

    Article  MathSciNet  Google Scholar 

  34. Muskhelishvili, N.I.: Some Basic Problems of the Mathematical Theory of Elasticity. PhD thesis, Springer Netherlands, (2009

  35. Wu, X., Efendiev, Y., Hou, T.Y.: Analysis of upscaling absolute permeability. Discret. Contin. Dyn. Syst. Ser. B 2(2), 185–204 (2002)

    MathSciNet  MATH  Google Scholar 

  36. Yang, Y., Chung, E.T., Shubin, Fu.: An enriched multiscale mortar space for high contrast flow problems. Commun. Comput. Phys. 23, 476–499 (2018)

    Article  MathSciNet  Google Scholar 

  37. Yang, Y., Fu, S., Chung, Eric T.: A two-grid preconditioner with an adaptive coarse space for flow simulations in highly heterogeneous media. J. Comput. Phys. 39(1), 1–13 (2019)

    Article  MathSciNet  Google Scholar 

  38. Zambrano, M., Serrano, S., Lazarov, B.S., Galvis, J.: Fast multiscale contrast independent preconditioners for linear elastic topology optimization problems. J. Comput. Appl. Math. 389, 113366 (2021)

  39. Zeng, Y., Yang, X., Deng, K., Peng, P., Yang, H., Muzamil, M., Qiujiao, Du.: A broadband seismic metamaterial plate with simple structure and easy realization. J. Appl. Phys. 125(22), 224901 (2019)

    Article  Google Scholar 

  40. Zhang, D., Lu, Z.: An efficient, high-order perturbation approach for flow in random porous media via Karhunen Lo\(\grave{e}\)ve and polynomial expansions. J. Comput. Phys. 194(2), 773–794 (2004)

    Article  Google Scholar 

Download references

Funding

Yanfang Yang’s work is supported by the National Natural Science Foundation of China (Grant No. 11901129), Basic Research Project of Guangzhou, and Introduction of talent research start-up fund at Guangzhou University. The datasets generated during and/or analysed during the current study are available from the corresponding author on reasonable request.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shubin Fu.

Ethics declarations

Conflict of interest

There is no conflicts of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yang, Y., Fu, S. & Chung, E.T. An Adaptive Generalized Multiscale Finite Element Method Based Two-Grid Preconditioner for Large Scale High-Contrast Linear Elasticity Problems. J Sci Comput 92, 21 (2022). https://doi.org/10.1007/s10915-022-01869-w

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10915-022-01869-w

Keywords

Navigation