Skip to main content
Log in

A Positivity Preserving, Energy Stable Finite Difference Scheme for the Flory-Huggins-Cahn-Hilliard-Navier-Stokes System

  • Published:
Journal of Scientific Computing Aims and scope Submit manuscript

Abstract

In this paper, we propose and analyze a finite difference numerical scheme for the Cahn-Hilliard-Navier-Stokes system, with logarithmic Flory-Huggins energy potential. In the numerical approximation to the singular chemical potential, the logarithmic term and the surface diffusion term are implicitly updated, while an explicit computation is applied to the concave expansive term. Moreover, the convective term in the phase field evolutionary equation is approximated in a semi-implicit manner. Similarly, the fluid momentum equation is computed by a semi-implicit algorithm: implicit treatment for the kinematic diffusion term, explicit update for the pressure gradient, combined with semi-implicit approximations to the fluid convection and the phase field coupled term, respectively. Such a semi-implicit method gives an intermediate velocity field. Subsequently, a Helmholtz projection into the divergence-free vector field yields the velocity vector and the pressure variable at the next time step. This approach decouples the Stokes solver, which in turn drastically improves the numerical efficiency. The positivity-preserving property and the unique solvability of the proposed numerical scheme is theoretically justified, i.e., the phase variable is always between -1 and 1, following the singular nature of the logarithmic term as the phase variable approaches the singular limit values. In addition, an iteration construction technique is applied in the positivity-preserving and unique solvability analysis, motivated by the non-symmetric nature of the fluid convection term. The energy stability of the proposed numerical scheme could be derived by a careful estimate. A few numerical results are presented to validate the robustness of the proposed numerical scheme.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Data Availibility

not applicable

References

  1. Browder, F.: Nonlinear elliptic boundary value problems. Bull. Amer. Math. Soc. 69, 962–874 (1963)

    MathSciNet  MATH  Google Scholar 

  2. Cahn, J.W., Elliott, C.M., Novick-Cohen, A.: The Cahn-Hilliard equation with a concentration dependent mobility: Motion by minus the Laplacian of the mean curvature. Europ. J. Appl. Math. 7, 287–301 (1996)

    Article  MathSciNet  MATH  Google Scholar 

  3. Chen, W., Feng, W., Liu, Y., Wang, C., Wise, S.M.: A second order energy stable scheme for the Cahn-Hilliard-Hele-Shaw equation. Discrete Contin. Dyn. Syst. Ser. B 24(1), 149–182 (2019)

    MathSciNet  MATH  Google Scholar 

  4. Chen, W., Han, D., Wang, C., Wang, S., Wang, X., Zhang, Y.: Error estimate of a decoupled numerical scheme for the Cahn-Hilliard-Stokes-Darcy system. IMA J. Numer. Anal., (2022). accepted and published online: https://doi.org/10.1093/imanum/drab046

  5. Chen, W., Jing, J., Wang, C., Wang, X., Wise, S.M.: A modified Crank-Nicolson scheme for the Flory-Huggin Cahn-Hilliard model. Commun. Comput. Phys. 31(1), 60–93 (2022)

    Article  MathSciNet  MATH  Google Scholar 

  6. Chen, W., Liu, Y., Wang, C., Wise, S.M.: An optimal-rate convergence analysis of a fully discrete finite difference scheme for Cahn-Hilliard-Hele-Shaw equation. Math. Comp. 85, 2231–2257 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  7. Chen, W., Wang, C., Wang, X., Wise, S.M.: Positivity-preserving, energy stable numerical schemes for the Cahn-Hilliard equation with logarithmic potential. J. Comput. Phys.: X 3, 100031 (2019)

    MathSciNet  Google Scholar 

  8. Cheng, K., Wang, C., Wise, S.M.: An energy stable Fourier pseudo-spectral numerical scheme for the square phase field crystal equation. Commun. Comput. Phys. 26, 1335–1364 (2019)

    Article  MathSciNet  MATH  Google Scholar 

  9. Copetti, M.I.M., Elliott, C.M.: Numerical analysis of the Cahn-Hilliard equation with a logarithmic free energy. Numer. Math. 63, 39–65 (1992)

    Article  MathSciNet  MATH  Google Scholar 

  10. Diegel, A., Wang, C., Wang, X., Wise, S.M.: Convergence analysis and error estimates for a second order accurate finite element method for the Cahn-Hilliard-Navier-Stokes system. Numer. Math. 137, 495–534 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  11. Doi, M.: Soft Matter Physics. Oxford University Press, Oxford, UK (2013)

    Book  MATH  Google Scholar 

  12. Dong, L., Wang, C., Wise, S.M., Zhang, Z.: A positivity-preserving, energy stable scheme for a ternary Cahn-Hilliard system with the singular interfacial parameters. J. Comput. Phys. 442, 110451 (2021)

    Article  MathSciNet  MATH  Google Scholar 

  13. Dong, L., Wang, C., Zhang, H., Zhang, Z.: A positivity-preserving, energy stable and convergent numerical scheme for the Cahn-Hilliard equation with a Flory-Huggins-deGennes energy. Commun. Math. Sci. 17, 921–939 (2019)

    Article  MathSciNet  MATH  Google Scholar 

  14. Dong, L., Wang, C., Zhang, H., Zhang, Z.: A positivity-preserving second-order BDF scheme for the Cahn-Hilliard equation with variable interfacial parameters. Commun. Comput. Phys. 28, 967–998 (2020)

    Article  MathSciNet  MATH  Google Scholar 

  15. Duan, C., Chen, W., Liu, C., Wang, C., Yue, X.: A second order accurate, energy stable numerical scheme for one-dimensional porous medium equation by an energetic variational approach. Commun. Math. Sci., (2022). Accepted and in press

  16. Duan, C., Liu, C., Wang, C., Yue, X.: Convergence analysis of a numerical scheme for the porous medium equation by an energetic variational approach. Numer. Math. Theor. Meth. Appl. 13, 1–18 (2020)

    Article  MathSciNet  MATH  Google Scholar 

  17. E, W., Liu, J.-G.: Projection method III. Spatial discretization on the staggered grid. Math. Comp. 71, 27–47 (2002)

  18. Elliott, C.M., Garcke, H.: On the Cahn-Hilliard equation with degenerate mobility. SIAM J. Math. Anal. 27, 404–423 (1996)

    Article  MathSciNet  MATH  Google Scholar 

  19. Feng, W., Guan, Z., Lowengrub, J.S., Wang, C., Wise, S.M., Chen, Y.: A uniquely solvable, energy stable numerical scheme for the functionalized Cahn-Hilliard equation and its convergence analysis. J. Sci. Comput. 76(3), 1938–1967 (2018)

    Article  MathSciNet  MATH  Google Scholar 

  20. Feng, W., Salgado, A.J., Wang, C., Wise, S.M.: Preconditioned steepest descent methods for some nonlinear elliptic equations involving p-Laplacian terms. J. Comput. Phys. 334, 45–67 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  21. Feng, W., Wang, C., Wise, S.M., Zhang, Z.: A second-order energy stable Backward Differentiation Formula method for the epitaxial thin film equation with slope selection. Numer. Methods Partial Differential Equations 34(6), 1975–2007 (2018)

    Article  MathSciNet  MATH  Google Scholar 

  22. Feng, X.: Fully discrete finite element approximations of the Navier-Stokes-Cahn-Hilliard diffuse interface model for two-phase fluid flows. SIAM J. Numer. Anal. 44, 1049–1072 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  23. Feng, X., Wise, S.M.: Analysis of a fully discrete finite element approximation of a Darcy-Cahn-Hilliard diffuse interface model for the Hele-Shaw flow. SIAM J. Numer. Anal. 50, 1320–1343 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  24. Guermond, J.L., Minev, P., Shen, J.: An overview of projection methods for incompressible flows. Comput. Methods Appl. Mech. Engrg. 195, 6011–6045 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  25. Han, D.: A decoupled unconditionally stable numerical scheme for the Cahn-Hilliard-Hele-Shaw system. J. Sci. Comput. 66(3), 1102–1121 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  26. Han, D., Wang, X.: A second order in time, uniquely solvable, unconditionally stable numerical scheme for Cahn-Hilliard-Navier-Stokes equation. J. Comput. Phys. 290, 139–156 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  27. Han, D., Wang, X.: Decoupled energy-law preserving numerical schemes for the Cahn-Hilliard-Darcy system. Numer. Methods Partial Differential Equations 32(3), 936–954 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  28. Harlow, F., Welch, J.: Numerical calculation of time-dependent viscous incompressible flow of fluid with free surface. Phys. Fluids 8, 2182–2189 (1965)

    Article  MathSciNet  MATH  Google Scholar 

  29. Kay, D., Welford, R.: Efficient numerical solution of Cahn-Hilliard-Navier-Stokes fluids in 2D. SIAM J. Sci. Comput. 29, 2241–2257 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  30. Kim, J.S., Kang, K., Lowengrub, J.S.: Conservative multigrid methods for Cahn-Hilliard fluids. J. Comput. Phys. 193, 511–543 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  31. Li, D., Tang, T.: Stability of the semi-implicit method for the Cahn-Hilliard equation with logarithmic potentials. Ann. Appl. Math. 37, 31–60 (2021)

    Article  MathSciNet  MATH  Google Scholar 

  32. Li, X., Qiao, Z., Wang, C.: Convergence analysis for a stabilized linear semi-implicit numerical scheme for the nonlocal Cahn-Hilliard equation. Math. Comp. 90, 171–188 (2021)

    Article  MathSciNet  MATH  Google Scholar 

  33. Li, X., Qiao, Z., Wang, C.: Stabilization parameter analysis of a second order linear numerical scheme for the nonlocal Cahn-Hilliard equation. IMA J. Numer. Anal., (2022). Accepted and in press

  34. Liu, C., Shen, J.: A phase field model for the mixture of two incompressible fluids and its approximation by a Fourier-spectral method. Physica D 179, 211–228 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  35. Liu, C., Shen, J., Yang, X.: Decoupled energy stable schemes for a phase-field model of two-phase incompressible flows with variable density. J. Sci. Comput. 62(2), 601–622 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  36. Liu, C., Wang, C., Wang, Y.: A structure-preserving, operator splitting scheme for reaction-diffusion equations with detailed balance. J. Comput. Phys. 436, 110253 (2021)

    Article  MathSciNet  MATH  Google Scholar 

  37. Liu, C., Wang, C., Wise, S.M., Yue, X., Zhou, S.: A positivity-preserving, energy stable and convergent numerical scheme for the Poisson-Nernst-Planck system. Math. Comp. 90, 2071–2106 (2021)

    Article  MathSciNet  MATH  Google Scholar 

  38. Liu, C., Wang, C., Wise, S.M., Yue, X., Zhou, S.: An iteration solver for the Poisson-Nernst-Planck system and its convergence analysis. J. Comput. Appl. Math. 406, 114017 (2022)

    Article  MathSciNet  MATH  Google Scholar 

  39. Liu, Y., Chen, W., Wang, C., Wise, S.M.: Error analysis of a mixed finite element method for a Cahn-Hilliard-Hele-Shaw system. Numer. Math. 135, 679–709 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  40. Lowengrub, J.S., Truskinovsky, L.: Cahn-Hilliard fluids and topological transitions. Proc. R. Soc. Lond. A 454, 2617–2654 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  41. Minty, G.: On a monotonicity method for the solution of non-linear equations in Banach spaces. Proc. Nat. Acad. Sci. 50, 1038–1041 (1963)

    Article  MathSciNet  MATH  Google Scholar 

  42. Qian, Y., Wang, C., Zhou, S.: A positive and energy stable numerical scheme for the Poisson-Nernst-Planck-Cahn-Hilliard equations with steric interactions. J. Comput. Phys. 426, 109908 (2021)

    Article  MathSciNet  MATH  Google Scholar 

  43. Samelson, R., Temam, R., Wang, C., Wang, S.: Surface pressure Poisson equation formulation of the primitive equations: Numerical schemes. SIAM J. Numer. Anal. 41, 1163–1194 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  44. Samelson, R., Temam, R., Wang, C., Wang, S.: A fourth order numerical method for the planetary geostrophic equations with inviscid geostrophic balance. Numer. Math. 107, 669–705 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  45. Shen, J., Yang, X.: A phase-field model and its numerical approximation for two-phase incompressible flows with different densities and viscosities. SIAM J. Sci. Comput. 32, 1159–1179 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  46. Shen, J., Yang, X.: Decoupled, energy stable schemes for phase-field models of two-phase incompressible flows. SIAM J. Numer. Anal. 53(1), 279–296 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  47. Wang, C., Liu, J.-G.: Convergence of gauge method for incompressible flow. Math. Comp. 69, 1385–1407 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  48. Yuan, M., Chen, W., Wang, C., Wise, S.M., Zhang, Z.: An energy stable finite element scheme for the three-component Cahn-Hilliard-type model for macromolecular microsphere composite hydrogels. J. Sci. Comput. 87, 78 (2021)

    Article  MathSciNet  MATH  Google Scholar 

  49. Zhang, J., Wang, C., Wise, S.M., Zhang, Z.: Structure-preserving, energy stable numerical schemes for a liquid thin film coarsening model. SIAM J. Sci. Comput. 43(2), A1248–A1272 (2021)

    Article  MathSciNet  MATH  Google Scholar 

  50. Zhao, J.: A general framework to derive linear, decoupled and energy-stable schemes for reversible-irreversible thermodynamically consistent models. Comput. Math. Appl. 110(5), 91–109 (2022)

    Article  MathSciNet  MATH  Google Scholar 

  51. Zhao, J., Han, D.: Second-order decoupled energy-stable schemes for Cahn-Hilliard-Navier-Stokes equations. J. Comput. Phys. 443, 110536 (2021)

    Article  MathSciNet  MATH  Google Scholar 

  52. Zhao, J., Yang, X., Shen, J., Wang, Q.: A decoupled energy stable scheme for a hydrodynamic phase-field model of mixtures of nematic liquid crystals and viscous fluids. J. Comput. Phys. 305, 539–556 (2016)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Acknowledgements

This work is supported in part by the grants NSFC 12071090 (W. Chen), NSF DMS-2012269 (C. Wang), NSFC 11871159, Guangdong Provincial Key Laboratory for Computational Science and Material Design 2019B030301001 (X. Wang). C. Wang also thanks the Key Laboratory of Mathematics for Nonlinear Sciences, Fudan University, for the support.

Funding

The authors have not disclosed any funding.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Cheng Wang.

Ethics declarations

Conflict of interest

not applicable

Code Availability

not applicable

Ethics Approval

not applicable

Consent to Participate

not applicable

Consent for Publication

not applicable

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chen, W., Jing, J., Wang, C. et al. A Positivity Preserving, Energy Stable Finite Difference Scheme for the Flory-Huggins-Cahn-Hilliard-Navier-Stokes System. J Sci Comput 92, 31 (2022). https://doi.org/10.1007/s10915-022-01872-1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10915-022-01872-1

Keywords

Mathematics Subject Classification

Navigation