Abstract
In this paper we propose and analyze a novel mixed DG scheme for stress-velocity formulation of the Stokes equations with arbitrary polynomial orders on simplicial meshes and the symmetry of stress is strongly imposed. The optimal convergence error estimates are proved for stress and velocity measured in \(L^2\) errors. The primary difficulty is to prove \(L^2\) error of stress, and standard techniques will lead to sub-optimal convergence error estimates. As such, some new ingredients are adopted to recover the optimal convergence rates. The proposed scheme is also extended to solve the Brinkman problem, aiming to get a uniformly robust scheme for both the Stokes and Darcy limits. Finally, several numerical experiments are carried out to verify the performances of the proposed scheme. In particular, the numerical results demonstrate that the proposed scheme is robust with respect to the values of the viscosity.


Similar content being viewed by others
Data Availability Statements
The datasets generated during and/or analysed during the current study are available from the corresponding author on reasonable request.
References
Arnold, D.N., Qin, J.: Quadratic Velocity/Linear Pressure Stokes Elements. Advances in Computer Methods for Partial Differential Equations 7, 28–34 (1992)
Cockburn, B., Kanschat, G., Schötzau, D.: A note on discontinuous Galerkin divergence-free solutions of the Navier-Stokes equations. J. Sci. Comput. 31, 1269–1286 (2007)
Wang, J., Ye, X.: New finite element methods in computational fluid dynamics by H(div) elements. SIAM J. Numer. Anal. 45, 1269–1286 (2007)
Badia, S., Codina, R., Gudi, T., Guzmán, J.: Error analysis of discontinuous Galerkin methods for the Stokes problem under minimal regularity. IMA J. Numer. Anal. 34, 800–819 (2013)
Jeon, Y., Park, E.-J., Sheen, D.: A hybridized finite element method for the Stokes problem. Comput. Math. Appl. 68, 2222–2232 (2014)
Di Pietro, D.A., Ern, A., Linke, A., Schieweck, F.: A discontinuous skeletal method for the viscosity-dependent Stokes problem. Comput. Methods Appl. Mech. Engrg. 306, 175–195 (2016)
Wang, J., Ye, X.: A weak Galerkin finite element method for the Stokes equations. Adv. Comput. Math. 42, 155–174 (2016)
Farhloul, M., Fortin, M.: A new mixed finite element for the Stokes and Elasticity problems. SIAM J. Numer. Anal. 30, 971–990 (1993)
Behr, M.A., Franca, L.P., Tezduyar, T.E.: Stabilized finite element methods for the velocity-pressure-stress formulation of incompressible flows. Comput. Methods Appl. Mech. Engrg. 104, 31–48 (1993)
Cai, Z., Lee, B., Wang, P.: Least-squares methods for incompressible Newtonian fluid flow: Linear stationary problems. SIAM J. Numer. Anal. 42, 843–859 (2005)
Figueroa, L.E., Gatica, G.N., Márquez, A.: Augmented mixed finite element methods for the stationary Stokes equations. SIAM J. Sci. Comput. 31, 1082–1119 (2009)
Carstensen, C., Kim, D., Park, E.-J.: A priori and a posteriori pseudostress-velocity mixed finite element error analysis for the Stokes problem. SIAM J. Numer. Anal. 49, 2501–2523 (2011)
Cai, Z., Zhang, S.: Mixed methods for stationary Navier-Stokes equations based on pseudostress-pressure-velocity formulation. Math. Comp. 81, 1903–1927 (2012)
Carstensen, C., Gedicke, J., Park, E.-J.: Numerical experiments for the Arnold-Winther mixed finite elements for the Stokes problem. SIAM J. Sci. Comput. 34, A2267–A2287 (2012)
Du, J., Chung, E.T., Lam, M.F., Wang, X.-P.: Discontinuous Galerkin method with staggered hybridization for a class of nonlinear Stokes equations. J. Sci. Comput. 76, 1547–1577 (2018)
Kim, D., Zhao, L., Park, E.-J.: Staggered DG methods for the pseudostress-velocity formulation of the Stokes equations on general meshes. SIAM J. Sci. Comput. 42, A2537–A2560 (2020)
Brezzi, F., Fortin, M.: Mixed and Hybrid Finite Element Methods. Springer-Verlag, New York (1991)
Olshanskii, M.A., Reusken, A.: Grad-div stabilization for Stokes equations. Math. Comp. 73, 1699–1718 (2004)
Guzmán, J., Neilan, M.: Conforming and divergence-free Stokes elements in three dimensions. IMA J. Numer. Anal. 34, 1489–1508 (2013)
Guzmán, J., Neilan, M.: Conforming and divergence-free Stokes elements on general triangular meshes. Math. Comp. 285, 15–36 (2014)
Linke, A.: A divergence-free velocity reconstruction for incompressible flows. C. R. Math. Acad. Sci. Paris 350, 837–840 (2012)
Linke, A.: On the role of the Helmholtz decomposition in mixed methods for incompressible flows and a new variational crime. Comput. Methods Appl. Mech. Engrg. 268, 782–800 (2014)
Brennecke, C., Linke, A., Merdon, C., Schöberl, J.: Optimal and pressure-independent \({L}^2\) velocity error estimates for a modified Crouzeix-Raviart Stokes element with BDM reconstructions. J. Comput. Math. 33, 191–208 (2015)
Linke, A., Merdon, C.: Pressure-robustness and discrete Helmholtz projectors in mixed finite element methods for the incompressible Navier-Stokes equations. Comput. Methods Appl. Mech. Engrg. 311, 304–326 (2016)
Frerichs, D., Merdon, C.: Divergence-preserving reconstructions on polygons and a really pressure-robust virtual element method for the Stokes problem. IMA J. Numer. Anal., (2020)
Mu, L.: Pressure robust weak Galerkin finite element methods for Stokes problems. SIAM J. Sci. Comput. 42, B608–B629 (2020)
Zhao, L., Park, E.-J., Chung, E.T.: A pressure robust staggered discontinuous Galerkin method for the Stokes equations. arXiv:2007.00298, (2020)
Wang, G., Mu, L., Wang, Y., He, Y.: A pressure-robust virtual element method for the Stokes problem. Comput. Methods Appl. Mech. Engrg. 382, (2021)
Qian, Y., Wu, S., Wang, F.: A mixed discontinuous Galerkin method with symmetric stress for Brinkman problem based on the velocity-pseudostress formulation. Comput. Methods Appl. Mech. Engrg. 368, 113177 (2020)
Mardal, K.A., Tai, X.-C., Winther, R.: A robust finite element method for Darcy-Stokes flow. SIAM J. Numer. Anal. 40, 1605–1631 (2002)
Burman, E., Hansbo, P.: Stabilized Crouzeix-Raviart element for the Darcy-Stokes problem. Numer. Methods Partial Differential Equations 21(5), 986–997 (2005)
Könnö, J., Stenberg, R.: H(div)-conforming finite elements for the Brinkman problem. Math. Models Methods Appl. Sci. 21, 2227–2248 (2011)
Guzmán, J., Neilan, M.: A family of nonconforming elements for the Brinkman problem. IMA J. Numer. Anal. 32, 1484–1508 (2012)
Könnö, J., Stenberg, R.: Numerical computations with H(div)-finite elements for the Brinkman problem. Comput. Geosci. 16, 139–158 (2012)
Anaya, V., Mora, D., Oyarzúa, R., Ruiz-Baier, R.: A priori and a posteriori error analysis of a mixed scheme for the Brinkman problem. Numer. Math. 133, 781–817 (2016)
Raviart, P.A., Thomas, J.M.: A mixed finite element method for second order elliptic problems, Mathematical Aspects of Finite Element Method, (I. Galligani & E. Magenes eds). Lectures Notes in Math. 606. New York: Springer, pp. 292–315. (1977)
Brenner, S.C.: Korn’s inequalities for piecewise \(H^1\) vector fields. Math. Comp. 73, 1067–1087 (2004)
Boffi, D., Brezzi, F., Fortin, M.: Mixed Finite Element Methods and Applications, vol. 1. Springer, Berlin, Heidelberg (2013)
Brezzi, F., Douglas, J., Marini, L.D.: Two families of mixed finite elements for second order elliptic problems. Numer. Math. 47, 217–235 (1985)
Ciarlet, P.G.: The Finite Element Method for Elliptic Problems. Soc. Ind. Appl. Math. (2002)
Pietro, D.A.Di, Ern, A.: Mathematical Aspects of Discontinuous Galerkin Methods, in: Mathématiques & Applications, volume 69. Springer, Berlin, Heidelberg, (2012)
Girault, V., Raviart, P.A.: Finite element methods for Navier-Stokes equations: Theory and algorithms. Springer Series in Computational Mathematics, vol. 5. Springer-Verlag, Berlin, (1986)
Amrouche, C., Girault, V.: On the existence and regularity of the solution of Stokes problem in arbitrary dimension. Proc. Japan Acad. 67, 171–175 (1991)
Kovasznay, L.I.G.: Laminar flow behind a two-dimensional grid. Math. Proc. Camb. Philos. Soc. 44, 58–62 (1948)
Funding
The research of Lina Zhao was supported by a grant from City University of Hong Kong (Project No. 7200699)
Author information
Authors and Affiliations
Corresponding author
Ethics declarations
Conflict of interest
There is no conflicts of interest.
Additional information
Publisher's Note
Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
Rights and permissions
About this article
Cite this article
Zhao, L. Analysis of a Mixed DG Method for Stress-Velocity Formulation of the Stokes Equations. J Sci Comput 92, 44 (2022). https://doi.org/10.1007/s10915-022-01895-8
Received:
Revised:
Accepted:
Published:
DOI: https://doi.org/10.1007/s10915-022-01895-8