Skip to main content
Log in

Preconditioners with Symmetrized Techniques for Space Fractional Cahn-Hilliard Equations

  • Published:
Journal of Scientific Computing Aims and scope Submit manuscript

Abstract

In this paper, we study space fractional Cahn-Hilliard equations. A second-order stabilized finite difference scheme is exploited for the model equations. The resulting coefficient matrix is a nonsymmetric ill-conditioned Toeplitz-like matrix. Symmetrized strategies are proposed for the nonsymmetric system so that the conjugate gradient method can be utilized to derive the numerical solutions. Moreover, preconditioners based on the sine transform are designed to speed up the convergence rate of the proposed methods. Theoretically, we prove that the spectra of the preconditioned matrices are uniformly bounded in the interval (1/2, 3/2), which guarantees that the preconditioned conjugate gradient method converges linearly, within an iteration number independent of the matrix size. Numerical experiments are reported to show the effectiveness of the proposed methods.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Data Availability

Enquiries about data availability should be directed to the authors.

References

  1. Abels, H., Bosia, S., Grasselli, M.: Cahn-Hilliard equation with nonlocal singular free energies. Ann. Mat. Pura Appl. 194, 1071–1106 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  2. Aboelenen, T., EI-Hawary, H.M.: A high-order nodal discontinuous Galerkin method for a linearized fractional Cahn–Hilliard equation. Comput. Math. Appl. 73, 1197–1217 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  3. Ainsworth, M., Mao, Z.P.: Analysis and approximation of a fractional Cahn-Hilliard equation. SIAM J. Numer. Anal. 55, 1689–1718 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  4. Ainsworth, M., Mao, Z.P.: Well-posedness of the Cahn-Hilliard equation with fractional free energy and its Fourier Galerkin approximation. Chaos, Solitons Fractals 102, 264–273 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  5. Akagi, G., Schimperna, G., Segatti, A.: Fractional Cahn-Hilliard, Allen-Cahn and porous medium equations. J. Differ. Equ. 261, 2935–2985 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  6. Akrivis, G., Li, B.L., Li, D.F.: Energy-decaying extrapolated RK-SAV methods for the Allen-Cahn and Cahn-Hilliard equations. SIAM J. Sci. Comput. 41, A3703–A3727 (2019)

    Article  MathSciNet  MATH  Google Scholar 

  7. Barakitis, N., Ekström, SE., Vassalos, P.: Preconditioners for fractional diffusion equations based on the spectral symbol. arXiv: 1912.13304, 2019. Numer. Linear. Algebra Appl., (2022), in press

  8. Bini, D., Capovani, M.: Spectral and computational properties of band symmetric Toeplitz matrices. Linear Algebra Appl. 52(53), 99–126 (1983)

    Article  MathSciNet  MATH  Google Scholar 

  9. Bini, D., Di Benedetto, F.: A new preconditioner for the parallel solution of positive definite Toeplitz systems. In: Proceedings 2nd SPAA Conf. Crete (Greece). 220–223 (1990)

  10. Bosch, J., Stoll, M.: A fractional inpainting model based on the vector-valued Cahn-Hilliard equation. SIAM J. Imaging Sci. 8, 2352–2382 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  11. Boyanova, P., Neytcheva, M.: Efficient numerical solution of discrete multi-component Cahn-Hilliard systems. Comput. Math. Appl. 67, 106–121 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  12. Bu, L.L., Mei, L.Q., Hou, Y.: Stable second-order schemes for the space-fractional Cahn-Hilliard and Allen-Cahn equations. Comput. Math. Appl. 78, 3485–3500 (2019)

    Article  MathSciNet  MATH  Google Scholar 

  13. Bu, L.L., Mei, L.Q., Wang, Y., Hou, Y.: Energy stable numerical schemes for the fractional-in-space Cahn-Hilliard equation. Appl. Numer. Math. 158, 392–414 (2020)

    Article  MathSciNet  MATH  Google Scholar 

  14. Cahn, J.W., Hilliard, J.E.: Free energy of a nonuniform system. I. Interfacial free energy. J. Chem. Phys. 28, 129–144 (1958)

    Article  MATH  Google Scholar 

  15. Cai, M., Li, C.P.: On Riesz derivative. Fract. Calc. Appl. Anal. 22, 287–301 (2019)

    Article  MathSciNet  MATH  Google Scholar 

  16. Chan, R.H.: Toeplitz preconditioners for Toeplitz systems with nonnegative generating functions. IMA J. Numer. Anal. 11, 333–345 (1991)

    Article  MathSciNet  MATH  Google Scholar 

  17. Chan, R.H., Ng, M.K.: Conjugate gradient methods for Toeplitz systems. SIAM Rev. 38, 427–482 (1996)

    Article  MathSciNet  MATH  Google Scholar 

  18. Chan, P.K., Rey, A.D.: A numerical method for the nonlinear Cahn-Hilliard equation with nonperiodic boundary conditions. Comput. Mater. Sci. 3, 377–392 (1995)

    Article  Google Scholar 

  19. Cheng, Y.Z., Kurganov, A., Qu, Z.L., Tao, T.: Fast and stable explicit operator splitting methods for phase-field models. J. Comput. Phy. 303, 45–65 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  20. Di Benedetto, F., Fiorentino, G., Serra, S.: CG preconditioning for Toeplitz matrices. Comput. Math. Appl. 25, 35–45 (1993)

    Article  MathSciNet  MATH  Google Scholar 

  21. Di Benedetto, F., Serra-Capizzano, S.: A unifying approach to abstract matrix algebra preconditioning. Numer. Math. 82, 57–90 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  22. Capuzzo Dolcetta, I., Finzi Vita, S., March, R.: Area-preserving curve-shortening flows: from phase separation to image processing. Interfaces Free. Bound. 4, 325–343 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  23. Donatelli, M., Mazza, M., Serra-Capizzano, S.: Spectral analysis and structure preserving preconditioners for fractional diffusion equations. J. Comput. Phys. 307, 262–279 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  24. Hao, Z.P., Sun, Z.Z., Cao, W.R.: A fourth-order approximation of fractional derivatives with its applications. J. Comput. Phys. 281, 787–805 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  25. Hou, T.L., Tang, T., Yang, J.: Numerical analysis of fully discretized Crank-Nicolson scheme for fractional-in-space Allen-Cahn equations. J. Sci. Comput. 72, 1214–1231 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  26. Hu, Y., He, J.H.: On fractal space-time and fractional calculus. Therm. Sci. 20, 773–777 (2016)

    Article  Google Scholar 

  27. Huang, X., Fang, Z.W., Sun, H.W., Zhang, C.H.: A circulant preconditioner for the Riesz distributed-order space-fractional diffusion equations. Linear Multilinear Algebra. 1–16 (2020)

  28. Huang, X., Lin, X.L., Ng, M.K., Sun, H.W.: Spectral analysis for preconditioning of multi-dimensional Riesz fractional diffusion equations. arXiv: 2102.01371, 2021. Numer. Math. Theor. Meth. Appl., (2022), in press

  29. Lei, S.L., Sun, H.W.: A circulant preconditioner for fractional diffusion equations. J. Comput. Phys. 242, 715–725 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  30. Lin, X.L., Ng, M.K., Sun, H.W.: A splitting preconditioner for Toeplitz-like linear systems arising from fractional diffusion equations. SIAM J. Matrix Anal. Appl. 38, 1580–1614 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  31. Liu, H., Cheng, A.J., Wang, H., Zhao, J.: Time fractional Allen-Cahn and Cahn-Hilliard phase-field models and their numerical investigation. Comput. Math. Appl. 76, 1876–1892 (2018)

    Article  MathSciNet  MATH  Google Scholar 

  32. Macías-Díaz, J.E.: A structure-preserving method for a class of nonlinear dissipative wave equations with Riesz space-fractional derivatives. J. Comput. Phys. 351, 40–58 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  33. Miranville, A.: The Cahn-Hilliard equation: Recent Advances and Applications. CBMS-NSF Regional Conference Series in Applied Mathematics, Philadelphia, PA: SIAM, (2019)

  34. Ng, M.K.: Iterative Methods for Toeplitz Systems. Oxford University Press, New York (2004)

    MATH  Google Scholar 

  35. Paniconi, M., Elder, K.R.: Stationary, dynamical and chaotic states of the two-dimensional damped Kuramoto-Sivashinsky equation. Phys. Rev. E 56, 2713–2721 (1997)

    Article  Google Scholar 

  36. Podlubny, I.: Fractional Differential Equations. Academic Press, San Diego, CA (1999)

    MATH  Google Scholar 

  37. Serra, S.: Superlinear PCG methods for symmetric Toeplitz systems. Math. Comput. 68, 793–803 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  38. Serra-Capizzano, S.: Toeplitz preconditioners constructed from linear approximation processes. SIAM J. Matrix Anal. Appl. 20, 446–465 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  39. Shen, J., Yang, X.F.: Numerical approximations of Allen-Cahn and Cahn-Hilliard equations. Discret. Contin. Dyn. Syst. 28, 1669–1691 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  40. Wang, F., Chen, H.Z., Wang, H.: Finite element simulation and efficient algorithm for fractional Cahn-Hilliard equation. J. Comput. Appl. Math. 356, 248–266 (2019)

    Article  MathSciNet  MATH  Google Scholar 

  41. Wang, H., Wang, K.X.: An \({\cal{O}}(n\log ^2n)\) alternating-direction finite difference method for two-dimensional fractional diffusion equations. J. Comput. Phys. 230, 7830–7839 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  42. Wang, K.X., Wang, H.: A fast characteristic finite difference method for fractional advection-diffusion equations. Adv. Water Resour. 34, 810–816 (2011)

    Article  Google Scholar 

  43. Wang, H., Wang, K.X., Sircar, T.: A direct \({\cal{O}}(N\log ^2N)\) finite difference method for fractional diffusion equations. J. Comput. Phys. 229, 8095–8104 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  44. Weng, Z.F., Zhai, S.Y., Feng, X.L.: A Fourier spectral method for fractional-in-space Cahn-Hilliard equation. Appl. Math. Model. 42, 462–477 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  45. Zhai, S.Y., Wu, L.Y., Wang, J.Y., Weng, Z.F.: Numerical approximation of the fractional Cahn-Hilliard equation by operator splitting method. Numer. Algorithms. 84, 1155–1178 (2020)

    Article  MathSciNet  MATH  Google Scholar 

  46. Zhang, M., Zhang, G.F.: Fast image inpainting strategy based on the space-fractional modified Cahn-Hilliard equations. Comput. Math. Appl. 102, 1–14 (2021)

    Article  MathSciNet  MATH  Google Scholar 

  47. Zhao, Y.L., Li, M., Ostermann, A., Gu, X.M.: An efficient second-order energy stable BDF scheme for the space fractional Cahn-Hilliard equation. BIT Numer. Math. 61, 1061–1092 (2021)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Acknowledgements

The authors are grateful to the anonymous referees for their constructive comments which benefit this paper a lot. This work is supported in part by research grants of the Science and Technology Development Fund, Macau SAR (file no. 0122/2020/A3), University of Macau (file no. MYRG2020-00224-FST), and the National Natural Science Foundation of China (Grand No. 11771162).

Funding

The authors have not disclosed any funding.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hai-Wei Sun.

Ethics declarations

Competing interests

The authors have not disclosed any competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Huang, X., Li, D., Sun, HW. et al. Preconditioners with Symmetrized Techniques for Space Fractional Cahn-Hilliard Equations. J Sci Comput 92, 41 (2022). https://doi.org/10.1007/s10915-022-01900-0

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10915-022-01900-0

Keywords

Mathematics Subject Classification

Navigation