Abstract
In this paper, we study space fractional Cahn-Hilliard equations. A second-order stabilized finite difference scheme is exploited for the model equations. The resulting coefficient matrix is a nonsymmetric ill-conditioned Toeplitz-like matrix. Symmetrized strategies are proposed for the nonsymmetric system so that the conjugate gradient method can be utilized to derive the numerical solutions. Moreover, preconditioners based on the sine transform are designed to speed up the convergence rate of the proposed methods. Theoretically, we prove that the spectra of the preconditioned matrices are uniformly bounded in the interval (1/2, 3/2), which guarantees that the preconditioned conjugate gradient method converges linearly, within an iteration number independent of the matrix size. Numerical experiments are reported to show the effectiveness of the proposed methods.






Similar content being viewed by others
Data Availability
Enquiries about data availability should be directed to the authors.
References
Abels, H., Bosia, S., Grasselli, M.: Cahn-Hilliard equation with nonlocal singular free energies. Ann. Mat. Pura Appl. 194, 1071–1106 (2015)
Aboelenen, T., EI-Hawary, H.M.: A high-order nodal discontinuous Galerkin method for a linearized fractional Cahn–Hilliard equation. Comput. Math. Appl. 73, 1197–1217 (2017)
Ainsworth, M., Mao, Z.P.: Analysis and approximation of a fractional Cahn-Hilliard equation. SIAM J. Numer. Anal. 55, 1689–1718 (2017)
Ainsworth, M., Mao, Z.P.: Well-posedness of the Cahn-Hilliard equation with fractional free energy and its Fourier Galerkin approximation. Chaos, Solitons Fractals 102, 264–273 (2017)
Akagi, G., Schimperna, G., Segatti, A.: Fractional Cahn-Hilliard, Allen-Cahn and porous medium equations. J. Differ. Equ. 261, 2935–2985 (2016)
Akrivis, G., Li, B.L., Li, D.F.: Energy-decaying extrapolated RK-SAV methods for the Allen-Cahn and Cahn-Hilliard equations. SIAM J. Sci. Comput. 41, A3703–A3727 (2019)
Barakitis, N., Ekström, SE., Vassalos, P.: Preconditioners for fractional diffusion equations based on the spectral symbol. arXiv: 1912.13304, 2019. Numer. Linear. Algebra Appl., (2022), in press
Bini, D., Capovani, M.: Spectral and computational properties of band symmetric Toeplitz matrices. Linear Algebra Appl. 52(53), 99–126 (1983)
Bini, D., Di Benedetto, F.: A new preconditioner for the parallel solution of positive definite Toeplitz systems. In: Proceedings 2nd SPAA Conf. Crete (Greece). 220–223 (1990)
Bosch, J., Stoll, M.: A fractional inpainting model based on the vector-valued Cahn-Hilliard equation. SIAM J. Imaging Sci. 8, 2352–2382 (2015)
Boyanova, P., Neytcheva, M.: Efficient numerical solution of discrete multi-component Cahn-Hilliard systems. Comput. Math. Appl. 67, 106–121 (2014)
Bu, L.L., Mei, L.Q., Hou, Y.: Stable second-order schemes for the space-fractional Cahn-Hilliard and Allen-Cahn equations. Comput. Math. Appl. 78, 3485–3500 (2019)
Bu, L.L., Mei, L.Q., Wang, Y., Hou, Y.: Energy stable numerical schemes for the fractional-in-space Cahn-Hilliard equation. Appl. Numer. Math. 158, 392–414 (2020)
Cahn, J.W., Hilliard, J.E.: Free energy of a nonuniform system. I. Interfacial free energy. J. Chem. Phys. 28, 129–144 (1958)
Cai, M., Li, C.P.: On Riesz derivative. Fract. Calc. Appl. Anal. 22, 287–301 (2019)
Chan, R.H.: Toeplitz preconditioners for Toeplitz systems with nonnegative generating functions. IMA J. Numer. Anal. 11, 333–345 (1991)
Chan, R.H., Ng, M.K.: Conjugate gradient methods for Toeplitz systems. SIAM Rev. 38, 427–482 (1996)
Chan, P.K., Rey, A.D.: A numerical method for the nonlinear Cahn-Hilliard equation with nonperiodic boundary conditions. Comput. Mater. Sci. 3, 377–392 (1995)
Cheng, Y.Z., Kurganov, A., Qu, Z.L., Tao, T.: Fast and stable explicit operator splitting methods for phase-field models. J. Comput. Phy. 303, 45–65 (2015)
Di Benedetto, F., Fiorentino, G., Serra, S.: CG preconditioning for Toeplitz matrices. Comput. Math. Appl. 25, 35–45 (1993)
Di Benedetto, F., Serra-Capizzano, S.: A unifying approach to abstract matrix algebra preconditioning. Numer. Math. 82, 57–90 (1999)
Capuzzo Dolcetta, I., Finzi Vita, S., March, R.: Area-preserving curve-shortening flows: from phase separation to image processing. Interfaces Free. Bound. 4, 325–343 (2002)
Donatelli, M., Mazza, M., Serra-Capizzano, S.: Spectral analysis and structure preserving preconditioners for fractional diffusion equations. J. Comput. Phys. 307, 262–279 (2016)
Hao, Z.P., Sun, Z.Z., Cao, W.R.: A fourth-order approximation of fractional derivatives with its applications. J. Comput. Phys. 281, 787–805 (2015)
Hou, T.L., Tang, T., Yang, J.: Numerical analysis of fully discretized Crank-Nicolson scheme for fractional-in-space Allen-Cahn equations. J. Sci. Comput. 72, 1214–1231 (2017)
Hu, Y., He, J.H.: On fractal space-time and fractional calculus. Therm. Sci. 20, 773–777 (2016)
Huang, X., Fang, Z.W., Sun, H.W., Zhang, C.H.: A circulant preconditioner for the Riesz distributed-order space-fractional diffusion equations. Linear Multilinear Algebra. 1–16 (2020)
Huang, X., Lin, X.L., Ng, M.K., Sun, H.W.: Spectral analysis for preconditioning of multi-dimensional Riesz fractional diffusion equations. arXiv: 2102.01371, 2021. Numer. Math. Theor. Meth. Appl., (2022), in press
Lei, S.L., Sun, H.W.: A circulant preconditioner for fractional diffusion equations. J. Comput. Phys. 242, 715–725 (2013)
Lin, X.L., Ng, M.K., Sun, H.W.: A splitting preconditioner for Toeplitz-like linear systems arising from fractional diffusion equations. SIAM J. Matrix Anal. Appl. 38, 1580–1614 (2017)
Liu, H., Cheng, A.J., Wang, H., Zhao, J.: Time fractional Allen-Cahn and Cahn-Hilliard phase-field models and their numerical investigation. Comput. Math. Appl. 76, 1876–1892 (2018)
Macías-Díaz, J.E.: A structure-preserving method for a class of nonlinear dissipative wave equations with Riesz space-fractional derivatives. J. Comput. Phys. 351, 40–58 (2017)
Miranville, A.: The Cahn-Hilliard equation: Recent Advances and Applications. CBMS-NSF Regional Conference Series in Applied Mathematics, Philadelphia, PA: SIAM, (2019)
Ng, M.K.: Iterative Methods for Toeplitz Systems. Oxford University Press, New York (2004)
Paniconi, M., Elder, K.R.: Stationary, dynamical and chaotic states of the two-dimensional damped Kuramoto-Sivashinsky equation. Phys. Rev. E 56, 2713–2721 (1997)
Podlubny, I.: Fractional Differential Equations. Academic Press, San Diego, CA (1999)
Serra, S.: Superlinear PCG methods for symmetric Toeplitz systems. Math. Comput. 68, 793–803 (1999)
Serra-Capizzano, S.: Toeplitz preconditioners constructed from linear approximation processes. SIAM J. Matrix Anal. Appl. 20, 446–465 (1998)
Shen, J., Yang, X.F.: Numerical approximations of Allen-Cahn and Cahn-Hilliard equations. Discret. Contin. Dyn. Syst. 28, 1669–1691 (2010)
Wang, F., Chen, H.Z., Wang, H.: Finite element simulation and efficient algorithm for fractional Cahn-Hilliard equation. J. Comput. Appl. Math. 356, 248–266 (2019)
Wang, H., Wang, K.X.: An \({\cal{O}}(n\log ^2n)\) alternating-direction finite difference method for two-dimensional fractional diffusion equations. J. Comput. Phys. 230, 7830–7839 (2011)
Wang, K.X., Wang, H.: A fast characteristic finite difference method for fractional advection-diffusion equations. Adv. Water Resour. 34, 810–816 (2011)
Wang, H., Wang, K.X., Sircar, T.: A direct \({\cal{O}}(N\log ^2N)\) finite difference method for fractional diffusion equations. J. Comput. Phys. 229, 8095–8104 (2010)
Weng, Z.F., Zhai, S.Y., Feng, X.L.: A Fourier spectral method for fractional-in-space Cahn-Hilliard equation. Appl. Math. Model. 42, 462–477 (2017)
Zhai, S.Y., Wu, L.Y., Wang, J.Y., Weng, Z.F.: Numerical approximation of the fractional Cahn-Hilliard equation by operator splitting method. Numer. Algorithms. 84, 1155–1178 (2020)
Zhang, M., Zhang, G.F.: Fast image inpainting strategy based on the space-fractional modified Cahn-Hilliard equations. Comput. Math. Appl. 102, 1–14 (2021)
Zhao, Y.L., Li, M., Ostermann, A., Gu, X.M.: An efficient second-order energy stable BDF scheme for the space fractional Cahn-Hilliard equation. BIT Numer. Math. 61, 1061–1092 (2021)
Acknowledgements
The authors are grateful to the anonymous referees for their constructive comments which benefit this paper a lot. This work is supported in part by research grants of the Science and Technology Development Fund, Macau SAR (file no. 0122/2020/A3), University of Macau (file no. MYRG2020-00224-FST), and the National Natural Science Foundation of China (Grand No. 11771162).
Funding
The authors have not disclosed any funding.
Author information
Authors and Affiliations
Corresponding author
Ethics declarations
Competing interests
The authors have not disclosed any competing interests.
Additional information
Publisher's Note
Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
Rights and permissions
About this article
Cite this article
Huang, X., Li, D., Sun, HW. et al. Preconditioners with Symmetrized Techniques for Space Fractional Cahn-Hilliard Equations. J Sci Comput 92, 41 (2022). https://doi.org/10.1007/s10915-022-01900-0
Received:
Revised:
Accepted:
Published:
DOI: https://doi.org/10.1007/s10915-022-01900-0
Keywords
- Fractional Cahn-Hilliard
- Toeplitz-like
- Fast algorithm
- Sine transform based preconditioner
- Conjugate gradient method