Abstract
The low-rank approximation of a quaternion matrix has attracted growing attention in many applications including color image processing and signal processing. In this paper, based on quaternion normal distribution random sampling, we propose a randomized quaternion QLP decomposition algorithm for computing a low-rank approximation to a quaternion data matrix. For the theoretical analysis, we first present convergence results of the quaternion QLP decomposition, which provides slightly tighter upper bounds than the existing ones for the real QLP decomposition. Then, for the randomized quaternion QLP decomposition, the matrix approximation error and the singular value approximation error analyses are also established to show the proposed randomized algorithm can track the singular values of the quaternion data matrix with high probability. Finally, we present some numerical examples to illustrate the effectiveness and reliablity of the proposed algorithm.








Similar content being viewed by others
Data Availability Statement
All data generated or analysed during this study are included in this manuscript.
References
Chen, Y.Y., Guo, Y.W., Wang, Y.L., Wang, D., Peng, C., He, G.P.: Denoising of hyperspectral images using nonconvex low rank matrix approximation. IEEE Trans. Geosci. Remote Sens. 55, 5366–5380 (2017)
Ren, W.Q., Cao, X.C., Pan, J.S., Guo, X.J., Zuo, W.M., Yang, M.-H.: Image deblurring via enhanced low-rank prior. IEEE Trans. Image Process. 25, 3426–3437 (2016)
Halko, N., Martinsson, P.G., Tropp, J.A.: Finding structure with randomness: probabilistic algorithms for constructing approximate matrix decompositions. SIAM Rev. 53, 217–288 (2011)
Rokhlin, V., Szlam, A., Tygert, M.: A randomized algorithm for principal component analysis. SIAM J. Matrix Anal. Appl. 31, 1100–1124 (2009)
Muller, N., Magaia, L., Herbst, B.M.: Singular value decomposition, eigenfaces, and 3D reconstructions. SIAM Rev. 46, 518–545 (2004)
Martinsson, P.G.: A fast randomized algorithm for computing a hierarchically semi-separable representation of a matrix. SIAM J. Matrix Anal. Appl. 32, 1251–1274 (2011)
Xia, J.L., Gu, M.: Robust approximate Cholesky factorization of rank-structured symmetric positive definite matrices. SIAM J. Matrix Anal. Appl. 31, 2899–2920 (2010)
Eckart, C., Young, G.: The approximation of one matrix by another of lower rank. Psychometrika. 1, 211–218 (1936)
Golub, G.H., Van Loan, C.F.: Matrix Computations, 4th edn. Johns Hopkins University Press, Baltimore (2013)
Gu, M.: Subspace iteration randomization and singular value problems. SIAM J. Sci. Comput. 37, A1139–A1173 (2015)
Mahoney, M.: Randomized algorithms for matrices and data. Found. Trends Mach. Learn. 3, 123–224 (2011)
Tropp, J.A., Yurtsever, A., Udell, M., Cevher, V.: Practical sketching algorithms for low-rank matrix approximation. SIAM J. Matrix Anal. Appl. 38, 1454–1485 (2017)
Woodruff, D.P.: Sketching as a tool for numerical linear algebra. Found. Trends Theor. Comput. Sci. 10, 1–157 (2014)
Shabat, G., Shmueli, Y., Aizenbud, Y., Averbuch, A.: Randomized LU decomposition. Appl. Comput. Harmon. Anal. 44, 246–272 (2018)
Duersch, J.A., Gu, M.: Randomized QR with column pivoting. SIAM J. Sci. Comput. 39, C263–C291 (2017)
Xiao, J.W., Gu, M., Langou, J.: Fast parallel randomized QR with column pivoting algorithms for reliable low-rank matrix approximations. 2017 IEEE 24th International Conference on High Performance Computing (HiPC), IEEE. 233–242 (2017)
Duersch, J.A., Gu, M.: Randomized projection for rank-revealing matrix factorizations and low-rank approximations. SIAM Rev. 62, 661–682 (2020)
Wu, N.C., Xiang, H.: Randomized QLP decomposition. Linear Algebra Appl. 59, 18–35 (2020)
Hamilton, W.R.: Elements of quaternions. Chelsea, New York (1969)
Scolarici, G., Solombrino, L.: Notes on quaternionic groups representation. Int. J. Theor. Phys. 34, 2491–2500 (1995)
Bihan, N.L., Sangwine, S.J.: Quaternion principal component analysis of color images. IEEE Interniational Conference on Iamge Processing. 1, 809–812 (2003)
Jia, Z.G., Ng, M.K., Song, G.J.: Robust quaternion matrix completion with applications to image inpainting. Numer. Linear Algebra Appl. 26, e2245 (2019)
Jia, Z.G., Ng, M.K., Wang, W.: Color image restoration by saturation-value total variation. SIAM J. Imaging Sciences. 12, 972–1000 (2019)
Sangwine, S.J., Bihan, N.L.: Quaternion and octonion toolbox for Matlab. http://qtfm.sourceforge.net/
Bunse-Gerstner, A., Byers, R., Mehrmann, V.: A quaternion QR algorithm. Numer. Math. 55, 83–95 (1989)
Sangwine, S.J., Bihan, N.L.: Quaternion singular value decomposition based on bidiagonalization to a real or complex matrix using quaternion Householder transformations. Appl, Math. Comput. 182, 727–738 (2006)
Li, Y., Wei, M.S., Zhang, F.X., Zhao, J.L.: A real structure-preserving method for the quaternion LU decomposition, revisited. Calcolo. 54, 1553–1563 (2017)
Wang, M.H., Ma, W.H.: A structure-preserving method for the quaternion LU decomposition in quaternionic quantum theory. Comput. Phys. Comm. 184, 2182–2186 (2013)
Li, Y., Wei, M.S., Zhang, F.X., Zhao, J.L.: Real structure-preserving algorithms of Householder based transformations for quaternion matrices. J. Comput. Appl. Math. 305, 82–91 (2016)
Jia, Z.G., Wei, M.S., Zhao, M.-X., Chen, Y.: A new real structure-preserving quaternion QR algorithm. J. Comput. Appl. Math. 343, 26–48 (2018)
Li, Y., Wei, M.S., Zhang, F.X., Zhao, J.L.: A fast structure-preserving algorithms for computing the singular value decomposition of quaternion matrix. Appl. Math. Comput. 235, 157–167 (2014)
Wang, M.H., Ma, W.H.: A structure-preserving algorithm for the quaternion Cholesky decomposition. Appl. Math. Comput. 223, 354–361 (2013)
Chen, Y.Y., Xiao, X.L., Zhou, Y.C.: Low-rank quaternion approximation for color image processing. IEEE Trans. Image Process. 29, 1426–1439 (2020)
Bahia, B., Sacchi, M.D.: Quaternionic rank-reduction methods for vector-field seismic data processing. Digit. Signal Process. 87, 178–189 (2019)
Liu, Q.H., Jia, Z.G., Ling, S.T.: Randomized quaternion singular value decomposition for low-rank approximation. SIAM J. Sci. Comput. 44, A870–A900 (2022)
Stewart, G.W.: The QLP approximation to the singular value decomposition. SIAM J. Sci. Comput. 20, 1336–1348 (1999)
Huckaby, D.A., Chan, T.F.: On the convergence of Stewart’s QLP algorithm for approximating the SVD. Numer. Algorithms 32, 287–316 (2003)
Jia, Z.G., Ng, M.K.: Structure preserving quaternion generalized minimal residual method. SIAM J. Matrix Anal. Appl. 42, 616–634 (2021)
Ma, R.-R., Jia, Z.G., Bai, Z.-J.: A structure-preserving Jacobi algorithm for quaternion Hermitian eigenvalue problems. Comput. Math. Appl. 75, 809–820 (2018)
Jia, Z.G., Wei, M.S., Ling, S.T.: A new structure-preserving method for quaternion Hermitian eigenvalue problems. J. Comput. Appl. Math. 239, 12–24 (2013)
Zhang, F.Z.: Quaternions and matrices of quaternion. Linear Algebra Appl. 251, 21–57 (1997)
Mahoney, M.W., Duchi, J.C., Gilbert, A.C.: The Mathematics of Data. AMS, IAS/Park City Mathematics Institute, and SIAM (2018)
Hron, R.A., Johnson, C.R.: Topics in Matrix Analysis. Cambridge University Press, Cambridge (1991)
Bernstein, D.S.: Matrix Mathematics: Theory, Facts, and Formulas, 2nd edn. Princeton University Press, Princeton and Oxford (2009)
Higham, N.J.: Analysis of the Cholesky decomposition of a semi-definite matrix. In: Cox, M.G., Hammarling, S.J. (eds.) Reliable Numerical Computation, pp. 161–185. Oxford University Press, Oxford (1990)
Meier, M., Nakatsukasa, Y.: Fast randomized numerical rank estimation. preprint, arXiv: 2105.07388
Mathias, R., Stewart, G.W.: A block QR algorithm and singular value decomposition. Linear Algebra Appl. 182, 91–100 (1993)
Strogatz, L.S.: Nolinear Dynamics and Chaos: With Applications to Physics, Biology, Chemistry and Engineering. Westview Press, Boulder, Co (2001)
Acknowledgements
The authors are grateful to the handling editor and three anonymous referees for their useful comments and suggestions, which greatly improved the original presentation.
Funding
Not applicable.
Author information
Authors and Affiliations
Corresponding author
Ethics declarations
Competing Interests
The authors declare that they have no conflict of interest.
Additional information
Publisher's Note
Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
Rights and permissions
About this article
Cite this article
Ren, H., Ma, RR., Liu, Q. et al. Randomized Quaternion QLP Decomposition for Low-Rank Approximation. J Sci Comput 92, 80 (2022). https://doi.org/10.1007/s10915-022-01917-5
Received:
Revised:
Accepted:
Published:
DOI: https://doi.org/10.1007/s10915-022-01917-5