Abstract
In this study, a multilevel local defect-correction method is designed for solving nonsymmetric eigenvalue problems. The main feature of our approach is the transformation of the nonsymmetric eigenvalue problems into several symmetric boundary value problems defined in a multilevel finite element space sequence and some low-dimensional nonsymmetric eigenvalue problems defined in a specially designed correction space. Moreover, the symmetric boundary value problems involved in our algorithm are solved by the local defect-correction strategy that divides the computing domain into small-scale subdomains. Since solving the high-dimensional nonsymmetric eigenvalue problems is avoided which is quite time-consuming compared with that of solving boundary value problems, the presented algorithm greatly improves the solving efficiency for nonsymmetric eigenvalue problems. Rigorous theoretical analysis and several numerical experiments are given to demonstrate the efficiency of our algorithm.












Similar content being viewed by others
Data Availability
Enquiries about data availability should be directed to the authors.
References
Adams, R.A.: Sobolev Spaces. Academic Press, New York (1975)
Babuška, I., Osborn, J.: Eigenvalue Problems. In: Lions, P.G., Ciarlet, P.G. (eds.) Handbook of Numerical Analysis, vol. II Finite, Element Methods (Part 1), pp. 641–787. North-Holland, Amsterdam (1991)
Bi, H., Li, Z., Yang, Y.: Local and parallel finite element algorithms for the Steklov eigenvalue problem. Numer. Methods Partial Differ. Equ. 32(2), 399–417 (2016)
Bi, H., Yang, Y., Li, H.: Local and parallel finite element discretizations for eigenvalue problems. SIAM J. Sci. Comput. 15(6), A2575–A2597 (2013)
Brenner, S., Scott, L.: The Mathematical Theory of Finite Element Methods. Springer-Verlag, New York (1994)
Chen, H., Xie, H., Xu, F.: A full multigrid method for eigenvalue problems. J. Comput. Phys. 322, 747–759 (2016)
Ciarlet, P.: The Finite Element Method for Elliptic Problems. North-Holland, Amsterdam (1978)
Dai, X., Zhou, A.: Three-scale finite element discretizations for quantum eigenvalue problems. SIAM J. Numer. Anal. 46(1), 295–324 (2008)
Dong, X., He, Y., Wei, H., Zhang, Y.: Local and parallel finite element algorithm based on the partition of unity method for the incompressible MHD flow. Adv. Comput. Math. 44(4), 1295–1319 (2018)
Du, G., Zuo, L.: Local and parallel finite element post-processing scheme for the Stokes problem. Comput. Math. Appl. 73, 129–140 (2017)
Du, G., Hou, Y., Zuo, L.: A modified local and parallel finite element method for the mixed Stokes-Darcy model. J. Math. Anal. Appl. 435(2), 1129–1145 (2016)
Grisvard, P.: Elliptic problems in nonsmooth domains. Pitman, Boston, MA (1985)
He, Y., Xu, J., Zhou, A.: Local and parallel finite element algorithms for the Navier-Stokes problem. J. Comput. Math. 24(3), 227–238 (2006)
Jia, S., Xie, H., Xie, M., Xu, F.: A full multigrid method for nonlinear eigenvalue problems. Sci. China: Math. 59, 2037–2048 (2016)
Kolman, K.: A two-level method for nonsymmetric eigenvalue problems. Acta Math. Appl. Sin. (English series) 21(1), 112 (2005)
Li, Y., Han, X., Xie, H., You, C.: Local and parallel finite element algorithm based on multilevel discretization for eigenvalue problem. Int. J. Numer. Anal. & Model. 13(1), 73–89 (2016)
Lin, Q., Xie, H.: An observation on Aubin-Nitsche Lemma and its applications. Math. Pract. Theory 41(17), 247–258 (2011)
Lin, Q., Xie, H.: A multi-level correction scheme for eigenvalue problems. Math. Comp. 84(291), 71–88 (2015)
Lin, Q., Xie, H., Xu, F.: Multilevel correction adaptive finite element method for semilinear elliptic equation. Appl. Math. 60(5), 527–550 (2015)
Liu, Q., Hou, Y.: Local and parallel finite element algorithms for timedependent convection-diffusion equations. Appl. Math. Mech. Engl. Ed. 30, 787–794 (2009)
Ma, F., Ma, Y., Wo, W.: Local and parallel finite element algorithms based on two-grid discretization for steady Navier-Stokes equations. Appl. Math. Mech. 28(1), 27–35 (2007)
Ma, Y., Zhang, Z., Ren, C.: Local and parallel finite element algorithms based on two-grid discretization for the stream function form of Navier-Stokes equations. Appl. Math. Comput. 175, 786–813 (2006)
Shang, Y., Wang, K.: Local and parallel finite element algorithms based on two-grid discretizations for the transient Stokes equations. Numer. Algor. 54, 195–218 (2010)
Shang, Y., He, Y., Luo, Z.: A comparison of three kinds of local and parallel finite element algorithms based on two-grid discretizations for the stationary Navier-Stokes equations. Comput. Fluids 40, 249–257 (2011)
Tang, Q., Huang, Y.: Local and parallel finite element algorithm based on Oseen-type iteration for the stationary incompressible MHD flow. J. Sci. Comput. 70, 149–174 (2017)
Schatz, A., Wahlbin, L.: Interior maximum-norm estimates for finite element methods, Part II. Math. Comp. 64, 907–928 (1995)
Peng, Z., Bi, H., Li, H., Yang, Y.: A multilevel correction method for convection-diffusion eigenvalue problems. Math. Probl. Eng. article ID 904347 https://doi.org/10.1155/2015/904347 (2015)
Xie, H.: A multigrid method for eigenvalue problem. J. Comput. Phys. 274, 550–561 (2014)
Xie, H.: A type of multilevel method for the Steklov eigenvalue problem. IMA J. Numer. Anal. 34, 592–608 (2014)
Xie, H., Zhang, Z.: A multilevel correction scheme for nonsymmetric eigenvalue problems by finite element methods, arXiv:1505.06288 (2015)
Xu, F.: A cascadic adaptive finite element method for nonlinear eigenvalue problems in quantum physics. Multiscale Model. Simul. 18(1), 198–220 (2020)
Xu, F., Huang, Q.: A type of cascadic multigrid method for coupled semilinear elliptic equations. Numer. Algor. 83, 485–510 (2020)
Xu, F., Huang, Q.: Local and parallel multigrid method for nonlinear eigenvalue problems. J. Sci. Comput. 82, 20 (2020)
Xu, F., Huang, Q., Chen, S., Bing, T.: An adaptive multigrid method for semilinear elliptic equations. East Asian J. Appl. Math. 9(4), 683–702 (2019)
Xu, J., Zhou, A.: Local and parallel finite element algorithms based on two-grid discretizations. Math. Comput. 69(231), 881–909 (1999)
Xu, J., Zhou, A.: Local and parallel finite element algorithms for eigenvalue problems. Acta. Math. Appl. Sin. Engl. Ser. 18, 185–200 (2002)
Yu, J., Shi, F., Zheng, H.: Local and parallel finite element algorithms based on the partition of unity for the Stokes problem. SIAM J. Sci. Comput. 36(5), C547–C567 (2014)
Zhao, R., Yang, Y., Bi, H.: Local and parallel finite element method for solving the biharmonic eigenvalue problem of plate vibration. Numer. Methods Partial Differ. Equ. 35(2), 851–869 (2019)
Zheng, H., Yu, J., Shi, F.: Local and parallel finite element algorithm based on the partition of unity for incompressible flows. J. Sci. Comput. 65(2), 512–532 (2015)
Zheng, H., Shi, F., Hou, Y., Zhao, J., Cao, Y., Zhao, R.: New local and parallel finite element algorithm based on the partition of unity. J. Math. Anal. Appl. 435(1), 1–19 (2016)
Funding
This work was supported by National Natural Science Foundation of China (Grant Nos. 11801021, 11971047,72103210), General projects of science and technology plan of Beijing Municipal Education Commission (Grant No. KM202110005011), Soft Science Foundation of Science and Technology Department of Guangdong, China (Grant No. 2019A101002019).
Author information
Authors and Affiliations
Corresponding author
Ethics declarations
Conflict of interest
The authors declared that they have no conflicts of interest to this work.
Additional information
Publisher's Note
Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
Rights and permissions
About this article
Cite this article
Xu, F., Huang, Q., Dai, H. et al. Multilevel Local Defect-Correction Method for Nonsymmetric Eigenvalue Problems. J Sci Comput 92, 85 (2022). https://doi.org/10.1007/s10915-022-01926-4
Received:
Revised:
Accepted:
Published:
DOI: https://doi.org/10.1007/s10915-022-01926-4