Abstract
We present and analyze a robust and mass conservative virtual element method for the three-field formulation of Biot’s consolidation problem in poroelasticity. The displacement and fluid flux are respectively approximated by enriched \({\varvec{H}}({\text {div}})\) virtual elements and \({\varvec{H}}({\text {div}})\) virtual elements, while the pressure is discretized by piecewise polynomial functions. Optimal a priori error estimates are obtained, including the semi-discrete scheme and the fully-discrete scheme with the implicit Euler approximation in time. Moreover, our method achieves robustness with respect to the constants hidden in the error estimates, even for the Lamé coefficient tending to infinity and the arbitrarily small constrained specific storage coefficient, and therefore it is free of both volumetric (Poisson) locking and nonphysical pressure oscillations. Meanwhile, it also conserves pointwise mass conservation for Biot’s consolidation problem on the discrete level.








Similar content being viewed by others
Data Availability
Enquiries about data availability should be directed to the authors.
References
Adams, R.A., Fournier, J.J.F.: Sobolev spaces. Pure and Applied Mathematics, vol. 140, 2nd edn. Elsevier, Amsterdam (2003)
Anandarajah, A.: Computational methods in elasticity and plasticity. Solids and porous media, Springer, New York (2010)
Barry, S.I., Mercer, G.N.: Exact solutions for two-dimensional time-dependent flow and deformation within a poroelastic medium. Trans. ASME J. Appl. Mech. 66(2), 536–540 (1999)
Beirão da Veiga, L., Brezzi, F., Cangiani, A., Manzini, G., Marini, L.D., Russo, A.: Basic principles of virtual element methods. Math. Models Methods Appl. Sci. 23(1), 199–214 (2013)
Beirão da Veiga, L., Lovadina, C., Vacca, G.: Divergence free virtual elements for the Stokes problem on polygonal meshes. ESAIM Math. Model. Numer. Anal. 51(2), 509–535 (2017)
Beirão da Veiga, L., Lovadina, C., Vacca, G.: Virtual elements for the Navier-Stokes problem on polygonal meshes. SIAM J. Numer. Anal. 56(3), 1210–1242 (2018)
Berger, L., Bordas, R., Kay, D., Tavener, S.: Stabilized lowest-order finite element approximation for linear three-field poroelasticity. SIAM J. Sci. Comput. 37(5), A2222–A2245 (2015)
Biot, M.A.: Theory of elasticity and consolidation for a porous anisotropic solid. J. Appl. Phys. 26(2), 182–185 (1955)
Boffi, D., Botti, M., Di Pietro, D.A.: A nonconforming high-order method for the Biot problem on general meshes. SIAM J. Sci. Comput. 38(3), A1508–A1537 (2016)
Boffi, D., Brezzi, F., Fortin, M.: Mixed finite element methods and applications. Springer Series in Computational Mathematics, vol. 44. Springer, Heidelberg (2013)
Boon, W.M., Kuchta, M., Mardal, K.-A., Ruiz-Baier, R.: Robust preconditioners for perturbed saddle-point problems and conservative discretizations of Biot’s equations utilizing total pressure. SIAM J. Sci. Comput. 43(4), B961–B983 (2021)
Brenner, S.C., Scott, L.R.: The mathematical theory of finite element methods. Texts in Applied Mathematics, vol. 15, 3rd edn. Springer, New York (2008)
Brenner, S.C., Sung, L.-Y.: Virtual element methods on meshes with small edges or faces. Math. Models Methods Appl. Sci. 28(7), 1291–1336 (2018)
Brezzi, F., Falk, R.S., Marini, L.D.: Basic principles of mixed virtual element methods. ESAIM Math. Model. Numer. Anal. 48(4), 1227–1240 (2014)
Bürger, R., Kumar, S., Mora, D., Ruiz-Baier, R., Verma, N.: Virtual element methods for the three-field formulation of time-dependent linear poroelasticity. Adv. Comput. Math. 47(1), 37 (2021)
Cangiani, A., Georgoulis, E.H., Pryer, T., Sutton, O.J.: A posteriori error estimates for the virtual element method. Numer. Math. 137(4), 857–893 (2017)
Cangiani, A., Manzini, G., Sutton, O.J.: Conforming and nonconforming virtual element methods for elliptic problems. IMA J. Numer. Anal. 37(3), 1317–1354 (2017)
Chen, L., Huang, J.: Some error analysis on virtual element methods. Calcolo 55(1), 23 (2018)
Chen, L., Wang, F.: A divergence free weak virtual element method for the Stokes problem on polytopal meshes. J. Sci. Comput. 78(2), 864–886 (2019)
Chen, Y., Luo, Y., Feng, M.: Analysis of a discontinuous Galerkin method for the Biot’s consolidation problem. Appl. Math. Comput. 219(17), 9043–9056 (2013)
Coulet, J., Faille, I., Girault, V., Guy, N., Nataf, F.: A fully coupled scheme using virtual element method and finite volume for poroelasticity. Comput. Geosci. 24(2), 381–403 (2020)
da Veiga, LBa., Brezzi, F., Marini, L.D., Russo, A.: \(H({{\rm div}})\) and \(H({{\bf curl}})\)-conforming virtual element methods. Numer. Math. 133(2), 303–332 (2016)
Di Pietro, D.A., Ern, A.: A hybrid high-order locking-free method for linear elasticity on general meshes. Comput. Methods Appl. Mech. Eng. 283, 1–21 (2015)
Fu, G.: A high-order HDG method for the Biot’s consolidation model. Comput. Math. Appl. 77(1), 237–252 (2019)
Guo, J., Feng, M.: A new projection-based stabilized virtual element method for the Stokes problem. J. Sci. Comput. 85(1), 28 (2020)
Hong, Q., Kraus, J., Lymbery, M., Philo, F.: Conservative discretizations and parameter-robust preconditioners for Biot and multiple-network flux-based poroelasticity models. Numer. Linear Algebra Appl. 26(4), e2242 (2019)
Hu, X., Rodrigo, C., Gaspar, F.J., Zikatanov, L.T.: A nonconforming finite element method for the Biot’s consolidation model in poroelasticity. J. Comput. Appl. Math. 310, 143–154 (2017)
John, V., Linke, A., Merdon, C., Neilan, M., Rebholz, L.G.: On the divergence constraint in mixed finite element methods for incompressible flows. SIAM Rev. 59(3), 492–544 (2017)
Kanschat, G., Riviere, B.: A finite element method with strong mass conservation for Biot’s linear consolidation model. J. Sci. Comput. 77(3), 1762–1779 (2018)
Korsawe, J., Starke, G.: A least-squares mixed finite element method for Biot’s consolidation problem in porous media. SIAM J. Numer. Anal. 43(1), 318–339 (2005)
Kumar, S., Oyarzúa, R., Ruiz-Baier, R., Sandilya, R.: Conservative discontinuous finite volume and mixed schemes for a new four-field formulation in poroelasticity. ESAIM Math. Model. Numer. Anal. 54(1), 273–299 (2020)
Lee, J.J.: Robust three-field finite element methods for Biot’s consolidation model in poroelasticity. BIT 58(2), 347–372 (2018)
Lee, J.J., Piersanti, E., Mardal, K.-A., Rognes, M.E.: A mixed finite element method for nearly incompressible multiple-network poroelasticity. SIAM J. Sci. Comput. 41(2), A722–A747 (2019)
Mattheij, R., Molenaar, J.: Ordinary differential equations in theory and practice. Classics in Applied Mathematics, vol. 43. Society for Industrial and Applied Mathematics (SIAM), Philadelphia (2002). (Reprint of the 1996 original)
Murad, M.A., Loula, A.F.D.: On stability and convergence of finite element approximations of Biot’s consolidation problem. Int. J. Numer. Methods Eng. 37(4), 645–667 (1994)
Murad, M.A., Thomée, V., Loula, A.F.D.: Asymptotic behavior of semidiscrete finite-element approximations of Biot’s consolidation problem. SIAM J. Numer. Anal. 33(3), 1065–1083 (1996)
Oyarzúa, R., Ruiz-Baier, R.: Locking-free finite element methods for poroelasticity. SIAM J. Numer. Anal. 54(5), 2951–2973 (2016)
Phillips, P.J., Wheeler, M.F.: A coupling of mixed and continuous Galerkin finite element methods for poroelasticity. I. The continuous in time case. Comput. Geosci. 11(2), 131–144 (2007)
Phillips, P.J., Wheeler, M.F.: A coupling of mixed and discontinuous Galerkin finite element methods for poroelasticity. Comput. Geosci. 12(4), 417–435 (2008)
Rodrigo, C., Gaspar, F.J., Hu, X., Zikatanov, L.T.: Stability and monotonicity for some discretizations of the Biot’s consolidation model. Comput. Methods Appl. Mech. Eng. 298, 183–204 (2016)
Showalter, R.E.: Diffusion in poro-elastic media. J. Math. Anal. Appl. 251(1), 310–340 (2000)
Sun, M., Rui, H.: A coupling of weak Galerkin and mixed finite element methods for poroelasticity. Comput. Math. Appl. 73(5), 804–823 (2017)
Tang, X., Liu, Z., Zhang, B., Feng, M.: On the locking-free three-field virtual element methods for Biot’s consolidation model in poroelasticity. ESAIM Math. Model. Numer. Anal. 55(suppl.), S909–S939 (2021)
Terzaghi, K.: Theoretical Soil Mechanics. Chapman, Orange (2007)
Ženíšek, A.: The existence and uniqueness theorem in Biot’s consolidation theory. Apl. Mat. 29(3), 194–211 (1984)
Wang, G., Wang, F., Chen, L., He, Y.: A divergence free weak virtual element method for the Stokes–Darcy problem on general meshes. Comput. Methods Appl. Mech. Eng. 344, 998–1020 (2019)
Wang, J., Wang, R., Zhai, Q., Zhang, R.: A systematic study on weak Galerkin finite element methods for second order elliptic problems. J. Sci. Comput. 74(3), 1369–1396 (2018)
Yi, S.-Y.: A study of two modes of locking in poroelasticity. SIAM J. Numer. Anal. 55(4), 1915–1936 (2017)
Zeng, Y., Cai, M., Wang, F.: An \({{\rm H}}{{\rm (div)}}\)-conforming finite element method for the Biot consolidation model. East Asian J. Appl. Math. 9(3), 558–579 (2019)
Acknowledgements
The authors are very grateful to Editors and anonymous reviewers for their valuable suggestions on an earlier version.
Funding
Research supported by the National Natural Science Foundation of China (No.11971337) and the Scientific Research Foundation of Chengdu University of Information Technology (KYTZ202184).
Author information
Authors and Affiliations
Corresponding author
Ethics declarations
Competing interests
The authors have not disclosed any competing interests.
Additional information
Publisher's Note
Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
Rights and permissions
About this article
Cite this article
Guo, J., Feng, M. A Robust and Mass Conservative Virtual Element Method for Linear Three-field Poroelasticity. J Sci Comput 92, 95 (2022). https://doi.org/10.1007/s10915-022-01960-2
Received:
Revised:
Accepted:
Published:
DOI: https://doi.org/10.1007/s10915-022-01960-2