Skip to main content
Log in

Efficient Color Image Segmentation via Quaternion-based \(L_1/L_2\) Regularization

  • Published:
Journal of Scientific Computing Aims and scope Submit manuscript

Abstract

Color image segmentation is a key technology in image processing. In this paper, a two-stage image segmentation method is proposed that is based on the nonconvex \(L_1/L_2\) approximation of the Mumford-Shah (MS) model. Wherein, the nonconvex regularization term \(L_1/L_2\) on the gradient can approximate the Hausdorff measure and extract more boundary information. The first stage is to solve the nonconvex variant of the MS model and to obtain the smoothed image u. In our framework, we utilize the semi-proximal alternating direction method of multipliers (sPADMM) to sufficiently solve the proposed model. The second stage is segmenting the smoothed u into different phases with thresholds determined by the threshold clustering method. To better deal with the inherent color structures within different channels, we also apply the quaternion representation of the color image. Quantitative and qualitative results demonstrate clearly that our method is better than some state-of-the-art color image segmentation methods.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

Data Availability

Enquiries about data availability should be directed to the authors.

Notes

  1. http://www.wisdom.weizmann.ac.il/~vision/Seg_Evaluation_DB/dl.html

  2. https://www2.eecs.berkeley.edu/Research/Projects/CS/vision/grouping/segbench/

References

  1. Norouzi, A., Rahim, M.S.M., Altameem, A., Saba, T., Rad, A.E., Rehman, A., Uddin, M.: Medical image segmentation methods, algorithms, and applications. IETE Tech. Rev. 31(3), 199–213 (2014)

    Google Scholar 

  2. Duan, Y., Chang, H., Huang, W., et al.: The \(L_{0}\) regularized Mumford-Shah model for bias correction and segmentation of medical images. IEEE Trans. Image Process. 24(11), 3927–3938 (2015)

    MathSciNet  MATH  Google Scholar 

  3. Nirkin, Y., Masi, I., Tran, A.T., Hassner, T., Medioni, G.: Face segmentation, face swapping, and how they impact face recognition. Deep Learning-Based Face Analytics, 21-43 (2021)

  4. Wang, J.: The research on face recognition and segmentation based on intelligent background. Journal of Electrical and Electronic Engineering 8(1), 36–41 (2020)

    Google Scholar 

  5. Wu, T., Shao, J.: Non-convex and convex coupling image segmentation via TGpV regularization and thresholding. Adv. Appl. Math. Mech. 12(3), 849–878 (2020)

    MathSciNet  MATH  Google Scholar 

  6. Wu, T., Shao, J., Gu, X., et al.: Two-stage image segmentation based on nonconvex \(l_2\)-\(l_p\) approximation and thresholding. Appl. Math. Comput. 403, 126–168 (2021)

    Google Scholar 

  7. Wang, D., Li, H., Wei, X., Wang, X.P.: An efficient iterative thresholding method for image segmentation. J. Comput. Phys. 350, 657–667 (2017)

    MathSciNet  MATH  Google Scholar 

  8. Yu, H., He, F., Pan, Y.: A novel region-based active contour model via local patch similarity measure for image segmentation. Multimedia Tools and Applications 77(18), 24097–24119 (2018)

    Google Scholar 

  9. Jia, H., Sun, K., Song, W., Peng, X., Lang, C., Li, Y.: Multi-strategy emperor penguin optimizer for RGB histogram-based color satellite image segmentation using masi entropy. IEEE Access 7, 134448–134474 (2019)

    Google Scholar 

  10. Payne, L.E., Weinberger, H.F.: An optimal poincaré inequality for convex domains. Arch. Ration. Mech. Anal. 5(1), 286–292 (1960)

    MATH  Google Scholar 

  11. Pratondo, A., Chui, C.-K., Ong, S.-H.: Robust edge-stop functions for edge-based active contour models in medical image segmentation. IEEE Signal Process. Lett. 23(2), 222–226 (2015)

    Google Scholar 

  12. Liu, C., Liu, W., Xing, W.: An improved edge-based level set method combining local regional fitting information for noisy image segmentation. Signal Process. 130, 12–21 (2017)

    Google Scholar 

  13. Cremers, D., Rousson, M., Deriche, R.: A review of statistical approaches to level set segmentation: integrating color, texture, motion and shape. Int. J. Comput. Vision 72(2), 195–215 (2007)

    Google Scholar 

  14. Niu, S., Chen, Q., De Sisternes, L., Ji, Z., Zhou, Z., Rubin, D.L.: Robust noise region-based active contour model via local similarity factor for image segmentation. Pattern Recogn. 61, 104–119 (2017)

    Google Scholar 

  15. Mumford, D.B., Shah, J.: Optimal approximations by piecewise smooth functions and associated variational problems. Communications on Pure and Applied Mathematics (1989)

  16. Zhang, B., Xu, W., Cai, J. F., Lai, L.: Precise phase transition of total variation minimization. In: 2016 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP), 4518-4522 (2016)

  17. Chan, T.F., Vese, L.A.: Active contours without edges. IEEE Trans. Image Process. 10(2), 266–277 (2001)

    MATH  Google Scholar 

  18. Cai, X., Chan, R., Zeng, T.: A two-stage image segmentation method using a convex variant of the Mumford-Shah model and thresholding. SIAM J. Imag. Sci. 6(1), 368–390 (2013)

    MathSciNet  MATH  Google Scholar 

  19. Cai, X., Chan, R., Zeng, T.: An Overview of SaT Segmentation Methodology and Its Applications in Image Processing. Handbook of Mathematical Models and Algorithms in Computer Vision and Imaging: Mathematical Imaging and Vision, 1-27 (2021)

  20. Cai, X., Chan, R., Schonlieb, C.B., Steidl, G., Zeng, T.: Linkage Between Piecewise Constant Mumford-Shah Model and Rudin-Osher-Fatemi Model and Its Virtue in Image Segmentation. SIAM J. Sci. Comput. 41(6), B1310–B1340 (2019)

    MathSciNet  MATH  Google Scholar 

  21. Cai, X., Steidl, G.: Multiclass segmentation by iterated ROF thresholding. In: International Workshop on Energy Minimization Methods in Computer Vision and Pattern Recognition, 237-250 (2013)

  22. Esser, E., Lou, Y., Xin, J.: A method for finding structured sparse solutions to nonnegative least squares problems with applications. SIAM J. Imag. Sci. 6, 2010–2046 (2013)

    MathSciNet  MATH  Google Scholar 

  23. Yin, P., Esser, E., Xin, J.: Ratio and difference of \(l_1\) and \(l_2\) norms and sparse representation with coherent dictionaries. Commun. Inf. Syst. 14, 87–109 (2014)

    MathSciNet  MATH  Google Scholar 

  24. Fan, B., Xu, C.: Identifying source term in the subdiffusion equation with \(L_2\)-TV regularization. Inverse Prob. 37(10), 105008 (2021)

    MATH  Google Scholar 

  25. Ma, G., Yan, Z., Li, Z., Zhao, Z.: Efficient Iterative Regularization Method for Total Variation-Based Image Restoration. Electronics 11(2), 258 (2022)

    Google Scholar 

  26. Rahimi, Y., Wang, C., Dong, H., Lou, Y.: A scale-invariant approach for sparse signal recovery. SIAM J. Sci. Comput. 41(6), 3649–3672 (2019)

    MathSciNet  MATH  Google Scholar 

  27. Wang, C., Tao, M., Chuah, C.-N., Nagy, J., Lou, Y.: Minimizing \(l_1\) over \(l_2\) norms on the gradient. arXiv preprint arXiv:2101.00809 (2021)

  28. Hamilton, W.R.: Elements of quaternions. Longmans, Green, & Company, London (1866)

    Google Scholar 

  29. Fazel, M., Pong, T.K., Sun, D., Tseng, P.: Hankel matrix rank minimization with applications to system identification and realization. SIAM J. Matrix Anal. Appl. 34(3), 946–977 (2013)

    MathSciNet  MATH  Google Scholar 

  30. Han, D., Sun, D., Zhang, L.: Linear rate convergence of the alternating direction method of multipliers for convex composite programming. Math. Oper. Res. 43(2), 622–637 (2018)

    MathSciNet  MATH  Google Scholar 

  31. Liu, J., Lou, Y., Ni, G., Zeng, T.: An image sharpening operator combined with framelet for image deblurring. Inverse Prob. 36(4), 045015 (2020)

    MathSciNet  MATH  Google Scholar 

  32. Krishna, K., Murty, M Narasimha: Genetic K-means algorithm. IEEE Transactions on Systems, Man, and Cybernetics. Part B (Cybernetics) 29(3), 433–439 (1999)

    Google Scholar 

  33. Deng, Y., Manjunath, B.S., Shin, H.: Color image segmentation. In: Proceedings. 1999 IEEE Computer Society Conference on Computer Vision and Pattern Recognition, vol. 2, pp. 446-451 (1999)

  34. Bora, D.J., Gupta, A.K.: A new approach towards clustering based color image segmentation. Int. J. Comput. Appl. 107(12), 23–30 (2014)

    Google Scholar 

  35. Liang, H., Jia, H., Xing, Z., Ma, J., Peng, X.: Modified grasshopper algorithm-based multilevel thresholding for color image segmentation. IEEE Access 7, 11258–11295 (2019)

    Google Scholar 

  36. Tai, X.-C., Deng, L.-J., Yin, K.: A multigrid algorithm for maxflow and min-cut problems with applications to multiphase image segmentation. J. Sci. Comput. 87(3), 1–22 (2021)

    MathSciNet  MATH  Google Scholar 

  37. Jain, S., Laxmi, V.: Color image segmentation techniques: a survey. In: Proceedings of the International Conference on Microelectronics, Computing & Communication Systems, pp. 189-197 (2018)

  38. Pei, S.-C., Cheng, C.-M.: A novel block truncation coding of color images using a quaternion-moment-preserving principle. IEEE Trans. Commun. 45(5), 583–595 (1997)

    Google Scholar 

  39. Subakan, Özlem N., Vemuri, B.C.: Color image segmentation in a quaternion framework. In: International Workshop on Energy Minimization Methods in Computer Vision and Pattern Recognition, pp. 401-414 (2009)

  40. Shi, L., Funt, B.: Quaternion color texture segmentation. Comput. Vis. Image Underst. 107(1–2), 88–96 (2007)

    Google Scholar 

  41. Ray, S., Turi, R.H.: Determination of number of clusters in k-means clustering and application in colour image segmentation. In: Proceedings of the 4th International Conference on Advances in Pattern Recognition and Digital Techniques, pp. 137-143 (1999)

  42. Hoyer, P.O.: Non-negative sparse coding. In: Proceedings of the 12th IEEE Workshop on Neural Networks for Signal Processing, pp. 557-565 (2002)

  43. Duan, Y., Chang, H., Huang, W., Zhou, J., Lu, Z., Wu, C.: The \(l_0\) regularized Mumford-Shah model for bias correction and segmentation of medical images. IEEE Trans. Image Process. 24(11), 3927–3938 (2015)

    MathSciNet  MATH  Google Scholar 

  44. Evans, L.C.: Partial differential equations. Grad. Stud. Math. 19(4), 7 (1998)

    Google Scholar 

  45. Feichtinger, H.G., Zimmermann, G.: A banach space of test functions for gabor analysis, pp. 123-170 (1998)

  46. Ortega, J.M.: Numerical analysis: a second course (1990)

  47. Jia, X., Lei, T., Du, X., Liu, S., Meng, H., Nandi, A.K.: Robust self-sparse fuzzy clustering for image segmentation. IEEE Access 8, 146182–146195 (2020)

    Google Scholar 

  48. Lei, T., Liu, P., Jia, X., Zhang, X., Meng, H., Nandi, A.K.: Automatic fuzzy clustering framework for image segmentation. IEEE Trans. Fuzzy Syst. 28(9), 2078–2092 (2019)

    Google Scholar 

  49. Lei, T., Jia, X., Zhang, Y., Liu, S., Meng, H., Nandi, A.K.: Superpixel-based fast fuzzy c-means clustering for color image segmentation. IEEE Trans. Fuzzy Syst. 27(9), 1753–1766 (2018)

    Google Scholar 

  50. Cai, X., Chan, R., Nikolova, M., Zeng, T.: A three-stage approach for segmenting degraded color images: Smoothing, lifting and thresholding (SLaT). J. Sci. Comput. 72(3), 1313–1332 (2017)

    MathSciNet  MATH  Google Scholar 

  51. Jha, S., Kumar, R., Priyadarshini, I., Smarandache, F., Long, H.V., et al.: Neutrosophic image segmentation with dice coefficients. Measurement 134, 762–772 (2019)

    Google Scholar 

  52. Wu, T., Gu, X., Wang, Y., Zeng, T.: Adaptive total variation based image segmentation with semi-proximal alternating minimization. Signal Process. 183, 108017 (2021)

    Google Scholar 

  53. Wang, C., Tao, M., Nagy, J.G., et al.: Limited-Angle CT Reconstruction via the \(L_1/L_2\) Minimization. SIAM J. Imag. Sci. 14(2), 749–777 (2021)

    MATH  Google Scholar 

  54. Hiriart-Urruty, J.B., Lemaréchal, C.: Convex analysis and minimization algorithms I: Fundamentals. Springer Science & Business Media, Paris (2013)

    MATH  Google Scholar 

Download references

Funding

This work was supported in part by the National Key R &D Program of China under Grants 2021YFE0203700, NSFC/RGC N_CUHK 415/19, ITF MHP/038/20, RGC 14300219, 14302920, and 14301121; in part by CUHK Direct Grant for Research, the Natural Science Foundation of China, under Grants 61971234, 12126340, 12126304, and 11501301; and in part by NUPT through the QingLan Project for Colleges and Universities of Jiangsu Province, 1311 Talent Plan.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tieyong Zeng.

Ethics declarations

Competing Interests

The authors have not disclosed any competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendix

Appendix

To prepare for convergence analysis, we summarize some equivalent conditions for strong convexity and Lipschitz smooth functions in Lemma 4 and Lemma 5, respectively.

Lemma 4

A function f(x) is called strongly convex with parameter \(\beta \) if and only if one of the following conditions holds

  1. (a)

    \(g(x)=f(x)-\frac{\beta }{2}\left\| x\right\| _2^2\) is convex;

  2. (b)

    \(\left\langle \nabla f(x)-\nabla f(y),x-y\right\rangle \ge \beta \left\| x-y\right\| _2^2\), \(\forall x,y\);

  3. (c)

    \(f(y)\ge f(x)+\left\langle \nabla f(x),y-x\right\rangle +\frac{\beta }{2}\left\| y-x\right\| _2^2\), \(\forall x,y\).

Lemma 5

The gradient of f(x) is Lipschitz continuous with parameter \(L>0\) if and only if one of the following conditions holds

  1. (a)

    \(\left\| \nabla f(x)-\nabla f(y)\right\| _2 \le L\left\| x-y\right\| _2\), \(\forall x,y\);

  2. (b)

    \(g(x)=\frac{L}{2}\left\| x\right\| _2^2-f(x)\) is convex;

  3. (c)

    \(f(y)\le f(x)+\left\langle \nabla f(x),y-x\right\rangle +\frac{L}{2}\left\| y-x\right\| _2^2\), \(\forall x,y\).

1.1 Proof of Lemma 1

Proof

The h-subproblem in (13) follows the optimality condition that

$$\begin{aligned} \begin{aligned} -\frac{\left\| \nabla u^{k+1}\right\| _1}{\left\| h^{k+1}\right\| ^3_2 }h^{k+1}+\rho _2(h^{k+1}-\nabla u^{k+1}-r^k)+Z_2(h^{k+1}-h^k)=0. \end{aligned} \end{aligned}$$
(31)

By using the dual update \(r^{k+1}=r^k+\nabla u^{k+1}-h^{k+1}\), we can obtain

$$\begin{aligned} \begin{aligned} r^{k+1}=-\frac{\left\| \nabla u^{k+1}\right\| _1}{\rho _2\left\| h^{k+1}\right\| _2^3}h^{k+1}+\frac{1}{\rho _2}Z_2(h^{k+1}-h^k). \end{aligned} \end{aligned}$$
(32)

We can estimate

$$\begin{aligned} \begin{aligned} \left\| r^{k+1}-r^{k}\right\| _2&\le \frac{1}{\rho _2}\left\| \frac{\left\| \nabla u^{k+1}\right\| _1}{\left\| h^{k+1}\right\| _2^3}h^{k+1}-\frac{\left\| \nabla u^k\right\| _1}{\left\| h^k\right\| ^3_2}h^k \right\| _2\\&\quad +\frac{\left\| Z_2\right\| _2}{\rho _2}\left( \left\| h^{k+1}-h^k\right\| _2+\left\| h^k-h^{k-1}\right\| _2\right) \\&\le \frac{1}{\rho _2} \left( \frac{\left| \left\| \nabla u^{k+1}\right\| _1-\left\| \nabla u^k\right\| _1\right| }{\left\| h^{k+1}\right\| _2^3}+\left\| \nabla u^k\right\| _1 \left\| \frac{h^{k+1}}{\left\| h^{k+1}\right\| _2^3}-\frac{h^k}{\left\| h^k\right\| _2^3}\right\| \right) \\&\quad +\frac{1}{\rho _2}\left( \left\| Z_2\right\| _2\left\| h^{k+1}-h^k\right\| _2+\left\| Z_2\right\| _2\left\| h^k-h^{k-1}\right\| _2 \right) . \end{aligned} \end{aligned}$$
(33)

For the first term in (33), \(\left\| x\right\| _1 \le \sqrt{l}\left\| x\right\| _2\) for a vector x of the length of l and \(\left\| \nabla \right\| _2\le 2\sqrt{2}\) are used, thus resulting to

$$\begin{aligned} \begin{aligned} \left| \left\| \nabla u^{k+1}\right\| _1 -\left\| \nabla u^k\right\| _1 \right|&\le \left\| \nabla (u^{k+1}-u^k)\right\| _1 \le \sqrt{2mn}\left\| \nabla (u^{k+1}-u^k)\right\| _2\\&\le \sqrt{2mn}\cdot \left\| \nabla \right\| _2\cdot \left\| u^{k+1}-u^k\right\| _2\\&\le 4\sqrt{mn}\left\| u^{k+1}-u^k\right\| _2. \end{aligned} \end{aligned}$$
(34)

Here are notes that \(u\in {\mathbb {R}}^{m\times n}\) and \(\nabla u\in {\mathbb {R}}^{m\times n}\) (thus of length 2mn). Then for the first term in (33), we have

$$\begin{aligned} \begin{aligned} \left\| \nabla u^k\right\| _1\left\| \frac{h^{k+1}}{\left\| h^{k+1}\right\| _2^3}-\frac{h^k}{\left\| h^k\right\| _2^3}\right\| _2\le \frac{2M}{\epsilon ^3}\left\| h^{k+1}-h^k\right\| _2, \end{aligned} \end{aligned}$$
(35)

for which we use the following inequality

$$\begin{aligned} \begin{aligned} \left\| \nabla \left( \frac{1}{\left\| x\right\| _2}\right) -\nabla \left( \frac{1}{\left\| y\right\| _2}\right) \right\| _2\le \frac{2}{\epsilon ^3}\left\| x-y\right\| _2. \end{aligned} \end{aligned}$$
(36)

For x and y, \(\left\| x\right\| _2 \ge \epsilon \) and \(\left\| y\right\| _2 \ge \epsilon \) are satisfied. Then by combining (33)-(35) and using the Cauchy-Schwarz inequality, we can obtain (23). \(\square \)

1.2 Proof of Lemma 2

Proof

With the same method in [53], we can easily verify that there is a constant \({\bar{c}}_1>0\), such that

$$\begin{aligned} \begin{aligned} {\mathcal {L}}_1 (u^{k+1},h^{k+1};r^{k+1})-{\mathcal {L}}_1 (u^k,h^k;r^k) \le - \frac{{\bar{c}}_1}{2}\left\| u^{k+1}-u^k\right\| _2^2. \end{aligned} \end{aligned}$$
(37)

Actually, the only difference between our augmented Lagrangian function \({\mathcal {L}}_1\) and that in [53] is the term \(\frac{\mu }{2}\left\| \nabla u\right\| _2^2\). As this term is convex and combined with Lemma 4, then apparently (37) holds.

Denote \(a=\left\| u^{k+1}\right\| _1\) and \(L=\frac{2M}{\epsilon ^3}\). Lemma 5 (c) and (36) lead to

$$\begin{aligned} \frac{a}{\left\| h^{k+1}\right\| _2} \le \frac{a}{\left\| h^{k}\right\| _2}-\left\langle \frac{ah^k}{\left\| h^k\right\| _2^3},h^{k+1}-h^k\right\rangle +\frac{L}{2}\left\| h^{k+1}-h^k\right\| _2^2. \end{aligned}$$
(38)

Assigning \(z=\nabla u^{k+1}+r^k\) and utilizing the optimality condition of \(h^{k+1}\), we can obtain

$$\begin{aligned} \begin{aligned}&\frac{\rho _2}{2}\left( \left\| h^{k+1}-z\right\| _2^2-\left\| h^k-z\right\| _2^2\right) \\&\quad =\frac{\rho _2}{2}\left( \left\| h^{k+1}\right\| _2^2-\left\| h^k\right\| _2^2\right) -\left\langle -\frac{ah^{k+1}}{\left\| h^{k+1}\right\| _2^3}+\rho _2 h^{k+1}+Z_2(h^{k+1}-h^k), h^{k+1}-h^k\right\rangle \\&\quad =\left\langle -\frac{ah^{k+1}}{\left\| h^{k+1}\right\| _2^3}, h^{k+1}-h^k\right\rangle -\frac{\rho _2}{2}\left\| h^{k+1}-h^k\right\| _2^2-\left\| h^{k+1}-h^k\right\| _{Z_2}^2\\&\quad \le \left\langle -\frac{ah^{k+1}}{\left\| h^{k+1}\right\| _2^3}, h^{k+1}-h^k\right\rangle -\frac{\rho _2+2\alpha }{2}\left\| h^{k+1}-h^k\right\| _{Z_2}^2, \end{aligned} \end{aligned}$$
(39)

where \(\alpha \ge 0\) is the smallest eigenvalue of \(Z_2\). By putting together (38) and (39), we get

$$\begin{aligned} \begin{aligned}&{\mathcal {L}}_1 (u^{k+1},h^{k+1};r^{k+1})-{\mathcal {L}}_1 (u^k,h^k;r^k) \\&\quad \le \left\langle \frac{ah^{k+1}}{\left\| h^{k+1}\right\| _2^3}-\frac{ah^k}{\left\| h^k\right\| _2^3}, h^{k+1}-h^k \right\rangle -\frac{\rho _2+2\alpha -L}{2}\left\| h^{k+1}-h^k\right\| _2^2 \\&\quad \le \left\| \frac{ah^{k+1}}{\left\| h^{k+1}\right\| _2^3}-\frac{ah^k}{\left\| h^k\right\| _2^3}\right\| _2 \left\| h^{k+1}-h^k\right\| _2-\frac{\rho _2+2\alpha -L}{2}\left\| h^{k+1}-h^k\right\| _2^2\\&\quad \le -\frac{\rho _2+2\alpha -3L}{2}\left\| h^{k+1}-h^k\right\| _2^2. \end{aligned} \end{aligned}$$
(40)

Ultimately, from the update of \(r^k\), we calculate

$$\begin{aligned} \begin{aligned}&{\mathcal {L}}_1 (u^{k+1},h^{k+1};r^{k+1})-{\mathcal {L}}_1 (u^{k+1},h^{k+1};r^k)\\&\quad =\frac{\rho _2+2\alpha }{2}\left( \left\| r^k\right\| _2^2-\left\| r^{k+1}-2r^k\right\| _2^2\right) \le \frac{\rho _2+2\alpha }{2}\left\| r^{k+1}-r^k\right\| _2^2. \end{aligned} \end{aligned}$$
(41)

When combining Lemma 1 with inequalities (37), (40), and (41), we get

$$\begin{aligned} \begin{aligned} {\mathcal {L}}_1 (u^{k+1},h^{k+1};r^{k+1})&\le {\mathcal {L}}_1 (u^k,h^k;r^k)-c_1 \left\| u^{k+1}-u^{k}\right\| _2^2 \\&\quad -c_2'\left\| h^{k+1}-h^{k}\right\| _2^2+\frac{3\left\| Z_2\right\| _2^3}{\rho ^2_2}\left\| h^k-h^{k-1}\right\| _2^2, \end{aligned} \end{aligned}$$
(42)

where \(c_1=\frac{{\bar{c}}_1}{2}-\frac{24mn}{\rho _2\epsilon ^4}\) and \(c_2'=\frac{\rho _2-3L+2\alpha }{2}-3\left( \frac{2M}{\rho _2\epsilon ^3}+\frac{\left\| Z_2\right\| _2}{\rho _2}\right) ^2\). Then it follows from (42) that

$$\begin{aligned} \begin{aligned}&{\mathcal {L}}^{k+1}_h (u^{k+1},h^{k+1};r^{k+1})\\&\quad \le {\mathcal {L}}^{k+1}_h (u^k,h^k;r^k)-c_1 \left\| u^{k+1}-u^{k}\right\| _2^2 -c_2\left\| h^{k+1}-h^{k}\right\| _2^2-c_3\left\| h^k-h^{k-1}\right\| _2^2, \end{aligned} \end{aligned}$$
(43)

where \(c_2=c_2'-\frac{1}{2}\) and \(c_3=\frac{1}{2}-\frac{3\left\| Z_2\right\| _2^2}{\rho ^2_2}\). For sufficiently large \(\rho _2\), we have \(c_1, c_2, c_3>0\). \(\square \)

1.3 Proof of Lemma 3

Proof

The optimality condition of sPADMM iteration are as follows

$$\begin{aligned}&\frac{p^{k+1}}{\left\| h^k\right\| _2}+\lambda A^T(Au^{k+1}-f)+\rho _2\nabla ^T(\nabla u^{k+1}-h^k+r^k) \nonumber \\&\qquad \qquad \quad +\mu \nabla ^T\nabla u^{k+1}+Z_1(u^{k+1}-u^k)=0, \end{aligned}$$
(44a)
$$\begin{aligned}&-\frac{\left\| \nabla u^{k+1}\right\| _1}{\left\| h^{k+1}\right\| _2^3}+\rho _2(h^{k+1}-\nabla u^{k+1}-r^k)+Z_2(h^{k+1}-h^k)=0, \end{aligned}$$
(44b)
$$\begin{aligned}&r^{k+1}=r^k+\nabla u^{k+1}-h^{k+1}, \end{aligned}$$
(44c)

where \(p^{k+1}\in \partial \left\| \nabla u^{k+1}\right\| _1\). Let \(\eta _1^{k+1}, \eta _2^{k+1}, \eta _3^{k+1}\) be

$$\begin{aligned}&\eta _1^{k+1}=\frac{p^{k+1}}{\left\| h^{k+1}\right\| _2}+\lambda A^T(Au^{k+1}-f)+\mu \nabla ^T\nabla u^{k+1}\nonumber \\&\qquad \qquad \quad +\rho _2\nabla ^T(\nabla u^{k+1}-h^k+r^k), \end{aligned}$$
(45a)
$$\begin{aligned}&\eta _2^{k+1}=-\frac{\left\| \nabla u^{k+1}\right\| _1}{\left\| h^{k+1}\right\| _2^3}+\rho _2(h^{k+1}-\nabla u^{k+1}-r^k), \end{aligned}$$
(45b)
$$\begin{aligned}&\eta _3^{k+1}=\rho _2(\nabla u^{k+1}-h^{k+1}). \end{aligned}$$
(45c)

Obviously, we have

$$\begin{aligned} \begin{aligned} {\eta }_1^{k+1} \in \partial _{u} {\mathcal {L}}_1(u^{k+1},h^{k+1};r^{k+1}), \\ {\eta }_2^{k+1} \in \partial _{h} {\mathcal {L}}_1(u^{k+1},h^{k+1};r^{k+1}),\\ {\eta }_3^{k+1} \in \partial _{r} {\mathcal {L}}_1(u^{k+1},h^{k+1};r^{k+1}). \end{aligned} \end{aligned}$$

By combining (42) and (43), we have

$$\begin{aligned}&\eta _1^{k+1}=\left( \frac{p^{k+1}}{\left\| h^{k+1}\right\| _2}-\frac{p^{k+1}}{\left\| h^k\right\| _2}\right) -\rho _2\nabla ^T(h^{k+1}-h^k)\nonumber \\&\quad +\rho _2\nabla ^T(r^{k+1}-r^k)-Z_1(u^{k+1}-u^k), \end{aligned}$$
(46a)
$$\begin{aligned}&\eta _2^{k+1}=-\rho _2(r^{k+1}-r^k)-Z_2(h^{k+1}-h^k), \end{aligned}$$
(46b)
$$\begin{aligned}&\eta _3^{k+1}=\rho _2(r^{k+1}-r^k). \end{aligned}$$
(46c)

The subgradient chain rule [54] implies that \(\partial \left\| u\right\| _1=\nabla ^Tq\), wherein

$$\begin{aligned} q=\{q\vert \left\langle q, \nabla u\right\rangle _Y =\left\| \nabla u\right\| _1, \vert q_{ijk}\vert , \forall i,j,k\}. \end{aligned}$$

Consequently, we know what the upper bound is for \(\left\| p^{k+1}\right\| _2\le \left\| \nabla ^T\right\| _2\left\| q^{k+1}\right\| _2\le 2\sqrt{2mn}\). Based on simple calculations, it appears

$$\begin{aligned} \begin{aligned} \left\| \frac{p^{k+1}}{\left\| h^k\right\| _2}-\frac{p^{k+1}}{\left\| h^{k+1}\right\| _2}\right\| _2&=\left| \frac{1}{\left\| h^k\right\| _2}-\frac{1}{\left\| h^{k+1}\right\| _2}\right| \left\| p^{k+1}\right\| _2 \\&\le \frac{1}{\epsilon ^2}\left\| h^{k+1}-h^k\right\| _2\left\| p^{k+1}\right\| _2 \\&\le \frac{2\sqrt{2mn}}{\epsilon ^2}\left\| h^{k+1}-h^k\right\| _2. \end{aligned} \end{aligned}$$
(47)

Lastly, by setting \(\gamma =\max \{27\rho ^2_2,3\left\| Z_1\right\| _2^2,3(\frac{2\sqrt{2mn}}{\epsilon ^2}+2\sqrt{2}\rho _2)^2+2\left\| Z_2\right\| _2^2\}\) our claim follows instantly. \(\square \)

Rights and permissions

Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wu, T., Mao, Z., Li, Z. et al. Efficient Color Image Segmentation via Quaternion-based \(L_1/L_2\) Regularization. J Sci Comput 93, 9 (2022). https://doi.org/10.1007/s10915-022-01970-0

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10915-022-01970-0

Keywords

Mathematics Subject Classification