Skip to main content
Log in

Error Estimates for Approximations of Time-Fractional Biharmonic Equation with Nonsmooth Data

  • Published:
Journal of Scientific Computing Aims and scope Submit manuscript

Abstract

We consider a time-fractional biharmonic equation involving a Caputo derivative in time of fractional order \(\alpha \in (0,1)\) and a locally Lipschitz continuous nonlinearity. Local and global existence of solutions is discussed and detailed regularity results are provided. A finite element method in space combined with a backward Euler convolution quadrature in time is analyzed. Our objective is to allow initial data of low regularity compared to the number of derivatives occurring in the governing equation. Using a semigroup type approach, error estimates of optimal order are derived for solutions with smooth and nonsmooth initial data. Numerical tests are presented to validate the theoretical results.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Data Availability

Enquiries about data availability should be directed to the authors.

References

  1. Al-Maskari, M., Karaa, S.: Numerical approximation of semilinear subdiffusion equations with nonsmooth initial data. SIAM J. Numer. Anal. 57(3), 1524–1544 (2019)

    Article  MathSciNet  MATH  Google Scholar 

  2. Al-Maskari, M., Karaa, S.: The time-fractional Cahn-Hilliard equation: analysis and approximation. IMA J. Numer. Anal. 42(2), 1831–1865 (2022)

    Article  MathSciNet  MATH  Google Scholar 

  3. Chen, C., Thomée, V., Wahlbin, L.B.: Finite element approximation of a parabolic integro-differential equation with a weakly singular kernel. Math. Comp. 58, 587–602 (1992)

    Article  MathSciNet  MATH  Google Scholar 

  4. Cuesta, E., Lubich, C., Palencia, C.: Convolution quadrature time discretization of fractional diffusion-wave equations. Math. Comp. 75, 673–696 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  5. Danumjaya, P., Pani, A.K.: Numerical methods for the extended Fisher-Kolmogorov (EFK) equation. Int. J. Numer. Anal. Model. 3(2), 186–210 (2006)

    MathSciNet  MATH  Google Scholar 

  6. Danumjaya, P., Pani, A.K.: Mixed finite element methods for a fourth order reaction diffusion equation. Numer. Methods Partial Differ. Equ. 28(4), 1227–1251 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  7. Du, Y., Liu, Y., Li, H., Fang, Z., He, S.: Local discontinuous Galerkin method for a nonlinear time-fractional fourth-order partial differential equation. J. Comput. Phys. 344, 108–126 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  8. Elliott, C.M., Larsson, S.: Error estimates with smooth and nonsmooth data for a finite element method for the Cahn-Hilliard equation. Math. Comp. 58, 603–630 (1992)

    Article  MathSciNet  MATH  Google Scholar 

  9. Gudi, T., Gupta, H.S.: A fully discrete \(C^0\) interior penalty Galerkin approximation of the extended Fisher-Kolmogorov equation. J. Comput. Appl. Math. 247, 1–16 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  10. Huang, C., Stynes, M.: \(\alpha \)-robust error analysis of a mixed finite element method for a time-fractional biharmonic equation. Numer. Algorithms 87(4), 1749–1766 (2021)

    Article  MathSciNet  MATH  Google Scholar 

  11. Huang, C., An, N., Chen, H.: Local H1-norm error analysis of a mixed finite element method for a time-fractional biharmonic equation. Appl. Numer. Math. 173, 211–221 (2022)

    Article  MathSciNet  MATH  Google Scholar 

  12. Karaa, S.: Positivity of discrete time-fractional operators with applications to phase-field equations. SIAM J. Numer. Anal. 59(4), 2040–2053 (2021)

    Article  MathSciNet  MATH  Google Scholar 

  13. Larsson, S.: Semilinear parabolic partial differential equations: theory, approximation, and application. New trends in the Mathematical and Computer Sciences 3, 153–194 (2006)

    MathSciNet  MATH  Google Scholar 

  14. Liu, F., Zhao, X., Liu, B.: Fourier pseudo-spectral method for the extended Fisher-Kolmogorov equation in two dimensions. Adv. Difference Equ. 2017(1), 1–17 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  15. Liu, Y., Fang, Z., Li, H., He, S.: mixed finite element method for a time-fractional fourth-order partial differential equation. Appl. Math. Comput. 243, 703–717 (2014)

    MathSciNet  MATH  Google Scholar 

  16. Liu, H., Cheng, A., Wang, H., Zhao, J.: Time-fractional Allen-Cahn and Cahn-Hilliard phase-field models and their numerical investigation. Comput. Math. Appl. 76, 1876–1892 (2018)

    Article  MathSciNet  MATH  Google Scholar 

  17. Liu, Y., Du, Y., Li, H., Li, J., He, S.: A two-grid mixed finite element method for a nonlinear fourth-order reaction-diffusion problem with time-fractional derivative. Comput. Math. Appl. 70(10), 2474–2492 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  18. Liu, Y., Du, Y., Li, H., He, S., Gao, W.: Finite difference/finite element method for a nonlinear time-fractional fourth-order reaction-diffusion problem. Comput. Math. Appl. 70(4), 573–591 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  19. Lubich, C.: Convolution quadrature and discretized operational calculus-I. Numer. Math. 52, 129–145 (1988)

    Article  MathSciNet  MATH  Google Scholar 

  20. Lubich, C.: Convolution quadrature revisited. BIT Numer. Math. 44, 503–514 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  21. Thomée, V.: Galerkin Finite Element Methods for Parabolic Problems. Springer-Verlag, Berlin (2006)

    MATH  Google Scholar 

  22. Yang, X., Zhang, H., Xu, D.: Orthogonal spline collocation method for the fourth-order diffusion system. Comput. Math. Appl. 75(9), 3172–3185 (2018)

    Article  MathSciNet  MATH  Google Scholar 

  23. Zhang, J., Zhao, J., Wang, J.: A non-uniform time-stepping convex splitting scheme for the time-fractional Cahn-Hilliard equation. Comput. Math. Appl. 80, 837–850 (2020)

    Article  MathSciNet  MATH  Google Scholar 

  24. Zhang, H., Yang, X., Xu, D.: An efficient spline collocation method for a nonlinear fourth-order reaction subdiffusion equation. J. Sci. Comput. 85(1), 18 (2020). (Paper No. 7)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Funding

The authors have not disclosed any funding.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Samir Karaa.

Ethics declarations

Conflict of interest

There is no conflict of interest related to this work.

Research Involving Human Participants and/or Animals

only the two authors.

Informed Consent

Not needed.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Al-Maskari, M., Karaa, S. Error Estimates for Approximations of Time-Fractional Biharmonic Equation with Nonsmooth Data. J Sci Comput 93, 8 (2022). https://doi.org/10.1007/s10915-022-01971-z

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10915-022-01971-z

Keywords

Mathematics Subject Classification