Skip to main content
Log in

The Abstract Laplacian Tensor of a Hypergraph with Applications in Clustering

  • Published:
Journal of Scientific Computing Aims and scope Submit manuscript

Abstract

The normalized abstract Laplacian tensor of a weighted hypergraph is investigated. The connectivity of the hypergraph is associated with the geometric multiplicity of the smallest eigenvalue of the abstract Laplacian tensor. There is an inequality between the normalized cut of the hypergraph and the second smallest eigenvalue of the abstract Laplacian tensor. An optimization method of the hypergraph clustering is established and analyzed. Numerical examples illustrate that our method is effective.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Data Availability

All datasets are publicly available.

Notes

  1. http://archive.ics.uci.edu/ml/datasets/Wine

  2. https://sci2s.ugr.es/keel/dataset.php?cod=60.

  3. https://sci2s.ugr.es/keel/dataset.php?cod=18.

References

  1. Absil, P.-A., Mahony, R., Sepulchre, R.: Optimization Algorithms on Matrix Manifolds. Princeton University Press, Princeton, NJ (2009)

    MATH  Google Scholar 

  2. Amghibech, S.: Eigenvalues of the discrete p-Laplacian for graphs. Ars Combin. 67, 283–302 (2003)

    MathSciNet  MATH  Google Scholar 

  3. Ausiello, G., Laura, L.: Directed hypergraphs: introduction and fundamental algorithms - a survey. Theoret. Comput. Sci. 658, 293–306 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  4. Berge, C.: Hypergraphs: Combinatorics of Finite Sets, volume 45. Elsevier, North Holland (1984)

  5. Chang, J., Chen, Y., Qi, L., Yan, H.: Hypergraph clustering using a new Laplacian tensor with applications in image processing. SIAM J. Imag. Sci. 13(3), 1157–1178 (2020)

    Article  MathSciNet  MATH  Google Scholar 

  6. Chang, J., Ding, W., Qi, L., Yan, H.: Computing the p-spectral radii of uniform hypergraphs with applications. J. Sci. Comput. 75(1), 1–25 (2018)

    Article  MathSciNet  MATH  Google Scholar 

  7. Chang, K.-C., Pearson, K., Zhang, T.: Perron-frobenius theorem for nonnegative tensors. Commun. Math. Sci. 6(2), 507–520 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  8. Chang, K.-C., Pearson, K., Zhang, T.: On eigenvalue problems of real symmetric tensors. J. Math. Anal. Appl. 350(1), 416–422 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  9. Chen, C., Rajapakse, I.: Tensor entropy for uniform hypergraphs. IEEE Transactions on Network Science and Engineering 7(4), 2889–2900 (2020)

    Article  MathSciNet  Google Scholar 

  10. Chen, Y., Qi, L., Zhang, X.: The Fiedler vector of a Laplacian tensor for hypergraph partitioning. SIAM J. Sci. Comput. 39(6), A2508–A2537 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  11. Chowdhury, S., Needham, T., Semrad, E., Wang, B., Zhou, Y.: Hypergraph co-optimal transport: Metric and categorical properties. arXiv:2112.03904v2, (2021)

  12. Chung, F.R., Graham, F.C.: Spectral Graph Theory. Number 92. American Mathematical Society, Providence, RI (1997)

  13. Cooper, J., Dutle, A.: Spectra of uniform hypergraphs. Linear Algebra Appl. 436(9), 3268–3292 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  14. Ding, W., Wei, Y.: Generalized tensor eigenvalue problems. SIAM J. Matrix Anal. Appl. 36(3), 1073–1099 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  15. Jiang, B., Dai, Y.-H.: A framework of constraint preserving update schemes for optimization on Stiefel manifold. Math. Program. 153(2), 535–575 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  16. Lim, L.-H.: Singular values and eigenvalues of tensors: a variational approach. In 1st IEEE International Workshop on Computational Advances in Multi-Sensor Adaptive Processing, 2005., pages 129–132. IEEE, (2005)

  17. Ly, I.: The first eigenvalue for the p-Laplacian operator. Journal of Inequalities in Pure and Applied Mathematics, 6, Article 91, (2005)

  18. Qi, L.: Eigenvalues of a real supersymmetric tensor. J. Symb. Comput. 40(6), 1302–1324 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  19. Qi, L.: \({H}^+\)-eigenvalues of Laplacian and signless Laplacian tensors. Commun. Math. Sci. 12(6), 1045–1064 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  20. Qi, L., Luo, Z.: Tensor Analysis: Spectral Theory and Special Tensors, volume 151. SIAM, (2017)

  21. Veldt, N., Benson, A.R., Kleinberg, J.: Minimizing localized ratio cut objectives in hypergraphs. In Proceedings of the 26th ACM SIGKDD International Conference on Knowledge Discovery & Data Mining, pages 1708–1718, (2020)

  22. Zhou, D., Huang, J., Schölkopf, B.: Learning with hypergraphs: Clustering, classification, and embedding. Adv. Neural. Inf. Process. Syst. 19, 1601–1608 (2006)

    Google Scholar 

Download references

Acknowledgements

The authors would like to thank the handling editor and three reviewers for their detailed comments on our first version.

Funding

Tianhang Liu is supported by the National Natural Science Foundation of China under grant 11771099. Yimin Wei is supported by the National Natural Science Foundation of China under grant 11771099, Innovation Program of Shanghai Municipal Education Commission and Shanghai Municipal Science and Technology Commission under grant 22WZ2501900.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yimin Wei.

Ethics declarations

Competing interests

The authors have not disclosed any competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liu, T., Wei, Y. The Abstract Laplacian Tensor of a Hypergraph with Applications in Clustering. J Sci Comput 93, 7 (2022). https://doi.org/10.1007/s10915-022-01973-x

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10915-022-01973-x

Keywords

Mathematics Subject Classification