Abstract
Numerical stability is of critical importance in general circulation models because it affects the design of algorithms, time to solution, and computational costs associated with the simulations, which are very expensive in practice. In this paper we extend the stability analysis for ocean-atmosphere coupling proposed in [Zhang et al., J. Sci. Comput. 84, 44(2020)] to a more realistic model that includes horizontal advection. We analyze various time-stepping strategies. We find that advection has a stabilizing effect in scenarios common to climate models when bulk interface condition and explicit flux coupling are used. We also show that our method can be used to study the stability impact of advection for other interface conditions such as Dirichlet–Neumann conditions.







Similar content being viewed by others
Data Availability
Data sharing not applicable to this article as no datasets were generated or analysed during the current study.
Abbreviations
- T :
-
Temperature variable
- x :
-
Horizontal spatial variable
- z :
-
Vertical spatial variable
- \(\Delta z\) :
-
Grid size in z direction
- t :
-
Time variable
- \(\Delta t\) :
-
Time step size
- K :
-
Large-eddy diffusion coefficient
- \(\nu \) :
-
Dynamic diffusivity
- U :
-
Large-eddy advection velocity
- u :
-
Advection velocity
- \(\rho \) :
-
Density
- c :
-
Heat capacity
- \({\hat{\alpha }}\) :
-
Bulk coefficient
- b :
-
Derived variable, \(b=\rho c {\hat{\alpha }}\)
- k :
-
Wave number for Fourier transform
- f :
-
Diffusion flux
- h :
-
Interfacial flux
- \(\beta \) :
-
Bulk Courant number
- d :
-
Diffusion Counrant number
- \({\mathcal {A}}\) :
-
Amplification factor
- \(\kappa \) :
-
A function of space
References
Hurrell, J.W., Holland, M.M., Gent, P.R., Ghan, S., Kay, J.E., Kushner, P.J., Lamarque, J.F., Large, W.G., Lawrence, D., Lindsay, K., Lipscomb, W.H., Long, M.C., Mahowald, N., Marsh, D.R., Neale, R.B., Rasch, P., Vavrus, S., Vertenstein, M., Bader, D., Collins, W.D., Hack, J.J., Kiehl, J., Marshall, S.: The Community Earth System Model: A framework for collaborative research. Bull. Am. Meteor. Soc. (2013). https://doi.org/10.1175/BAMS-D-12-00121.1
Golaz, J., et al.: The DOE E3SM coupled model version 1: Overview and evaluation at standard resolution. Journal of Advances in Modeling Earth Systems 11(7), 2089–2129 (2019). https://doi.org/10.1029/2018ms001603
Lemarie, F., Blayo, E., Debreu, L.: Analysis of ocean-atmosphere coupling algorithms: Consistency and stability. In: Procedia Computer Science, vol. 51, pp. 2066–2075. Elsevier (2015). https://doi.org/10.1016/j.procs.2015.05.473
Beljaars, A., Dutra, E., Balsamo, G., Lemarié, F.: On the numerical stability of surface-atmosphere coupling in weather and climate models. Geoscientific Model Development 10(2), 977–989 (2017). https://doi.org/10.5194/gmd-10-977-2017
Hallberg, R.: Numerical instabilities of the ice/ocean coupled system. CLIVAR Exchanges 19(69), 38–42 (2014)
Roberts, A., Craig, A., Maslowski, W., Osinski, R., Duvivier, A., Hughes, M., Nijssen, B., Cassano, J., Brunke, M.: Simulating transient ice-ocean Ekman transport in the Regional Arctic System Model and Community Earth System Model. Ann. Glaciol. 56(69), 211–228 (2015). https://doi.org/10.3189/2015AoG69A760
Bryan, F.o., Kauffman, B.G., Large, W.G., Gent, P.R.: The NCAR CSM flux coupler. Technical Report NCAR/TN-424+STR, NCAR (1996)
Perlin, N., Skyllingstad, E.D., Samelson, R.M., Barbour, P.L.: Numerical simulation of air-sea coupling during coastal upwelling. J. Phys. Oceanogr. 37(8), 2081–2093 (2007). https://doi.org/10.1175/JPO3104.1
Bao, J.W., Wilczak, J.M., Choi, J.K., Kantha, L.H.: Numerical simulations of air-sea interaction under high wind conditions using a coupled model: A study of Hurricane development. Mon. Weather Rev. 128(7 I), 2190–2210 (2000). https://doi.org/10.1175/1520-0493(2000)128<2190:NSOASI>2.0.CO;2
Kushnir, Y., Robinson, W.A., Blade, I., Hall, N., Peng, S., Sutton, R.: Atmospheric GCM response to extratropical SST anomalies: Synthesis and evaluation. J. Clim. 15(16), 2233–2256 (2002). https://doi.org/10.1175/1520-0442(2002)015<2233:AGRTES>2.0.CO;2
Beljaars, A., Balsamo, G., Bechtold, P., Bozzo, A., Forbes, R., Hogan, R.J., Köhler, M., Morcrette, J.-J., Tompkins, A.M., Viterbo, P., Wedi, N.: The numerics of physical parametrization in the ECMWF model. Front. Earth Sci. 6, 137 (2018). https://doi.org/10.3389/feart.2018.00137
Gross, M., Wan, H., Rasch, P.J., Caldwell, P.M., Williamson, D.L., Klocke, D., Jablonowski, C., Thatcher, D.R., Wood, N., Cullen, M., Beare, B., Willett, M., Lemarié, F., Blayo, E., Malardel, S., Termonia, P., Gassmann, A., Lauritzen, P.H., Johansen, H., Zarzycki, C.M., Sakaguchi, K., Leung, R.: Physics-dynamics coupling in weather, climate, and earth system models: Challenges and recent progress. Mon. Weather Rev. 146(11), 3505–3544 (2018). https://doi.org/10.1175/MWR-D-17-0345.1
Kevrekidis, I.G., Samaey, G.: Equation-free multiscale computation: Algorithms and applications. Annu. Rev. Phys. Chem. 60, 321–344 (2009)
Abhyankar, S., Constantinescu, E.M., Smith, B.F., Flueck, A.J., Maldonado, D.A.: Parallel dynamics simulation using a Krylov-Schwarz linear solution scheme. IEEE Transactions on Smart Grid 8(3), 1378–1386 (2016)
Venkatraman, R., Khaitan, S.K., Ajjarapu, V.: Dynamic co-simulation methods for combined transmission-distribution system with integration time step impact on convergence. IEEE Trans. Power Syst. 34(2), 1171–1181 (2018)
Girard, C., Delage, Y.: Stable schemes for nonlinear vertical diffusion in atmospheric circulation models. Mon. Weather Rev. 118(3), 737–745 (1990). https://doi.org/10.1175/1520-0493(1990)118<0737:SSFNVD>2.0.CO;2
Connors, J.M., Howell, J.S., Layton, W.J.: Partitioned time stepping for a parabolic two domain problem. SIAM J. Numer. Anal. 47(5), 3526–3549 (2009). https://doi.org/10.1137/080740891
Connors, J.M., Howell, J.S., Layton, W.J.: Decoupled time stepping methods for fluid-fluid interaction. SIAM J. Numer. Anal. 50(3), 1297–1319 (2012). https://doi.org/10.1137/090773362
Connors, J.M., Miloua, A.: Partitioned time discretization for parallel solution of coupled ODE systems. BIT Numer. Math. 51(2), 253–273 (2011). https://doi.org/10.1007/s10543-010-0295-z
Aggul, M., Connors, J.M., Erkmen, D., Labovsky, A.E.: A defect-deferred correction method for fluid-fluid interaction. SIAM J. Numer. Anal. 56(4), 2484–2512 (2018). https://doi.org/10.1137/17M1148219
Zhang, H., Liu, Z., Constantinescu, E., Jacob, R.: Stability analysis of interface conditions for ocean-atmosphere coupling. J. Sci. Comput. 84(3), 1–25 (2020). https://doi.org/10.1007/s10915-020-01293-y
Godunov, S.K., Ryaben’kii, V.S.: Spectral stability criteria of boundary value problems for non-self-adjoint difference equations. Russ. Math. Surv. 18(3), 1–12 (1963)
Kreiss, H.-O.: Stability theory for difference approximations of mixed initial boundary value problems, I. Math. Comput. 22(104), 703–714 (1968)
Osher, S.: Stability of difference approximations of dissipative type for mixed initial-boundary value problems. Math. Comput. 23, 335 (1969). https://doi.org/10.1090/S0025-5718-1969-0246530-8
Gustafsson, B., Kreiss, H.-O., Sundström, A.: Stability theory of difference approximations for mixed initial boundary value problems, II. Math. Comput. 26(119), 649–649 (1972). https://doi.org/10.1090/S0025-5718-1972-0341888-3
Coco, A., Russo, G.: Second order finite-difference ghost-point multigrid methods for elliptic problems with discontinuous coefficients on an arbitrary interface. J. Comput. Phys. 361, 299–330 (2018). https://doi.org/10.1016/j.jcp.2018.01.016
Yu, S., Zhou, Y., Wei, G.W.: Matched interface and boundary (MIB) method for elliptic problems with sharp-edged interfaces. J. Comput. Phys. 224(2), 729–756 (2007). https://doi.org/10.1016/j.jcp.2006.10.030
Li, Z.: A fast iterative algorithm for elliptic interface problems. SIAM J. Numer. Anal. 35(1), 230–254 (1998). https://doi.org/10.1137/S0036142995291329
Quarteroni, A., Valli, A.: Domain Decomposition Methods for Partial Differential Equations. Oxford University Press, Oxford (1999)
Benamou, J.-D.: A domain decomposition method with coupled transmission conditions for the optimal control of systems governed by elliptic partial differential equations. SIAM J. Numer. Anal. 33(6), 2401–2416 (1996). https://doi.org/10.1137/S0036142994267102
Discacciati, M.: Domain decomposition methods for the coupling of surface and groundwater flows. Technical report, EPFL (2004)
Jiang, B.: A parallel domain decomposition method for coupling of surface and groundwater flows. Comput. Methods Appl. Mech. Eng. 198(9), 947–957 (2009). https://doi.org/10.1016/j.cma.2008.11.001
Discacciati, M., Quarteroni, A.: Analysis of a domain decomposition method for the coupling of Stokes and Darcy equations. In: Brezzi, F., Buffa, A., Corsaro, S., Murli, A. (eds.) Numerical Mathematics and Advanced Applications, pp. 3–20. Springer, Milano (2003)
Tlupova, S.: A domain decomposition solution of the Stokes-Darcy system in 3D based on boundary integrals. J. Comput. Phys. 450, 110824 (2022). https://doi.org/10.1016/j.jcp.2021.110824
Hughes, G.O., Griffiths, R.W.: Horizontal convection. Annu. Rev. Fluid Mech. 40(1), 185–208 (2008). https://doi.org/10.1146/annurev.fluid.40.111406.102148
Liu, W.T., Katsaros, K.B., Businger, J.A., Liu, W.T., Katsaros, K.B., Businger, J.A.: Bulk parameterization of air-sea exchanges of heat and water vapor including the molecular constraints at the interface. J. Atmos. Sci. 36(9), 1722–1735 (1979). https://doi.org/10.1175/1520-0469(1979)036<1722:BPOASE>2.0.CO;2
Smith, S.D.: Coefficients for sea surface wind stress, heat flux, and wind profiles as a function of wind speed and temperature. Journal of Geophysical Research: Oceans 93(C12), 15467–15472 (1988). https://doi.org/10.1029/JC093iC12p15467
Fairall, C.W., Bradley, E.F., Rogers, D.P., Edson, J.B., Young, G.S.: Bulk parameterization of air-sea fluxes for tropical ocean global atmosphere coupled-ocean atmosphere response experiment. J. Geophys. Res. C: Oceans 101(C2), 3747–3764 (1996). https://doi.org/10.1029/95JC03205
Yaglom, A.: Fluctuation spectra and variances in convective turbulent boundary layers: A reevaluation of old models. Phys. Fluids 6(2), 962–972 (1994). https://doi.org/10.1063/1.868328
Banks, J.W., Sjögreen, B.: A normal mode stability analysis of numerical interface conditions for fluid/structure interaction. Communications in Computational Physics 10(2), 279–304 (2011). https://doi.org/10.4208/cicp.060210.300910a
Farhat, C., van der Zee, K.G., Geuzaine, P.: Provably second-order time-accurate loosely-coupled solution algorithms for transient nonlinear computational aeroelasticity. Comput. Methods Appl. Mech. Eng. 195(17–18), 1973–2001 (2006). https://doi.org/10.1016/j.cma.2004.11.031
Causin, P., Gerbeau, J.F., Nobile, F.: Added-mass effect in the design of partitioned algorithms for fluid-structure problems. Comput. Methods Appl. Mech. Eng. 194(42–44), 4506–4527 (2005). https://doi.org/10.1016/j.cma.2004.12.005
Bazilevs, Y., Calo, V.M., Hughes, T.J.R., Zhang, Y.: Isogeometric fluid-structure interaction: Theory, algorithms, and computations. Comput. Mech. 43(1), 3–37 (2008). https://doi.org/10.1007/s00466-008-0315-x
Degroote, J., Bathe, K.J., Vierendeels, J.: Performance of a new partitioned procedure versus a monolithic procedure in fluid-structure interaction. Comput. Struct. 87(11–12), 793–801 (2009). https://doi.org/10.1016/j.compstruc.2008.11.013
Funding
This material is based upon work supported by the U.S. Department of Energy, Office of Science, Office of Advanced Scientific Computing Research and Office of Biological and Environmental Research, Scientific Discovery through Advanced Computing (SciDAC) program under contract number DE-AC02-06CH11357.
Author information
Authors and Affiliations
Contributions
All authors contributed to the study conception and design. Analysis were performed by Hong Zhang and Zhengyu Liu. The first draft of the manuscript was written by Hong Zhang and all authors commented on previous versions of the manuscript. All authors read and approved the final manuscript.
Corresponding author
Ethics declarations
Competing Interests
The authors have no relevant financial or non-financial interests to disclose
Additional information
Publisher's Note
Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
This material is based upon work supported by the U.S. Department of Energy, Office of Science, Office of Advanced Scientific Computing Research, under contract DE-AC02-06CH11357, and by the Office of Biological and Environmental Research, Scientific Discovery through Advanced Computing (SciDAC) program, through the Coupling Approaches for Next-Generation Architectures (CANGA) project.
Rights and permissions
Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.
About this article
Cite this article
Zhang, H., Liu, Z., Constantinescu, E. et al. Stability Analysis of Coupled Advection-Diffusion Models with Bulk Interface Condition. J Sci Comput 93, 33 (2022). https://doi.org/10.1007/s10915-022-01983-9
Received:
Revised:
Accepted:
Published:
DOI: https://doi.org/10.1007/s10915-022-01983-9