Skip to main content

Advertisement

Log in

Stability Analysis of Coupled Advection-Diffusion Models with Bulk Interface Condition

  • Published:
Journal of Scientific Computing Aims and scope Submit manuscript

Abstract

Numerical stability is of critical importance in general circulation models because it affects the design of algorithms, time to solution, and computational costs associated with the simulations, which are very expensive in practice. In this paper we extend the stability analysis for ocean-atmosphere coupling proposed in [Zhang et al., J. Sci. Comput. 84, 44(2020)] to a more realistic model that includes horizontal advection. We analyze various time-stepping strategies. We find that advection has a stabilizing effect in scenarios common to climate models when bulk interface condition and explicit flux coupling are used. We also show that our method can be used to study the stability impact of advection for other interface conditions such as Dirichlet–Neumann conditions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Data Availability

Data sharing not applicable to this article as no datasets were generated or analysed during the current study.

Abbreviations

T :

Temperature variable

x :

Horizontal spatial variable

z :

Vertical spatial variable

\(\Delta z\) :

Grid size in z direction

t :

Time variable

\(\Delta t\) :

Time step size

K :

Large-eddy diffusion coefficient

\(\nu \) :

Dynamic diffusivity

U :

Large-eddy advection velocity

u :

Advection velocity

\(\rho \) :

Density

c :

Heat capacity

\({\hat{\alpha }}\) :

Bulk coefficient

b :

Derived variable, \(b=\rho c {\hat{\alpha }}\)

k :

Wave number for Fourier transform

f :

Diffusion flux

h :

Interfacial flux

\(\beta \) :

Bulk Courant number

d :

Diffusion Counrant number

\({\mathcal {A}}\) :

Amplification factor

\(\kappa \) :

A function of space

References

  1. Hurrell, J.W., Holland, M.M., Gent, P.R., Ghan, S., Kay, J.E., Kushner, P.J., Lamarque, J.F., Large, W.G., Lawrence, D., Lindsay, K., Lipscomb, W.H., Long, M.C., Mahowald, N., Marsh, D.R., Neale, R.B., Rasch, P., Vavrus, S., Vertenstein, M., Bader, D., Collins, W.D., Hack, J.J., Kiehl, J., Marshall, S.: The Community Earth System Model: A framework for collaborative research. Bull. Am. Meteor. Soc. (2013). https://doi.org/10.1175/BAMS-D-12-00121.1

    Article  Google Scholar 

  2. Golaz, J., et al.: The DOE E3SM coupled model version 1: Overview and evaluation at standard resolution. Journal of Advances in Modeling Earth Systems 11(7), 2089–2129 (2019). https://doi.org/10.1029/2018ms001603

    Article  Google Scholar 

  3. Lemarie, F., Blayo, E., Debreu, L.: Analysis of ocean-atmosphere coupling algorithms: Consistency and stability. In: Procedia Computer Science, vol. 51, pp. 2066–2075. Elsevier (2015). https://doi.org/10.1016/j.procs.2015.05.473

    Book  Google Scholar 

  4. Beljaars, A., Dutra, E., Balsamo, G., Lemarié, F.: On the numerical stability of surface-atmosphere coupling in weather and climate models. Geoscientific Model Development 10(2), 977–989 (2017). https://doi.org/10.5194/gmd-10-977-2017

    Article  Google Scholar 

  5. Hallberg, R.: Numerical instabilities of the ice/ocean coupled system. CLIVAR Exchanges 19(69), 38–42 (2014)

    Google Scholar 

  6. Roberts, A., Craig, A., Maslowski, W., Osinski, R., Duvivier, A., Hughes, M., Nijssen, B., Cassano, J., Brunke, M.: Simulating transient ice-ocean Ekman transport in the Regional Arctic System Model and Community Earth System Model. Ann. Glaciol. 56(69), 211–228 (2015). https://doi.org/10.3189/2015AoG69A760

    Article  Google Scholar 

  7. Bryan, F.o., Kauffman, B.G., Large, W.G., Gent, P.R.: The NCAR CSM flux coupler. Technical Report NCAR/TN-424+STR, NCAR (1996)

  8. Perlin, N., Skyllingstad, E.D., Samelson, R.M., Barbour, P.L.: Numerical simulation of air-sea coupling during coastal upwelling. J. Phys. Oceanogr. 37(8), 2081–2093 (2007). https://doi.org/10.1175/JPO3104.1

    Article  Google Scholar 

  9. Bao, J.W., Wilczak, J.M., Choi, J.K., Kantha, L.H.: Numerical simulations of air-sea interaction under high wind conditions using a coupled model: A study of Hurricane development. Mon. Weather Rev. 128(7 I), 2190–2210 (2000). https://doi.org/10.1175/1520-0493(2000)128<2190:NSOASI>2.0.CO;2

    Article  Google Scholar 

  10. Kushnir, Y., Robinson, W.A., Blade, I., Hall, N., Peng, S., Sutton, R.: Atmospheric GCM response to extratropical SST anomalies: Synthesis and evaluation. J. Clim. 15(16), 2233–2256 (2002). https://doi.org/10.1175/1520-0442(2002)015<2233:AGRTES>2.0.CO;2

    Article  Google Scholar 

  11. Beljaars, A., Balsamo, G., Bechtold, P., Bozzo, A., Forbes, R., Hogan, R.J., Köhler, M., Morcrette, J.-J., Tompkins, A.M., Viterbo, P., Wedi, N.: The numerics of physical parametrization in the ECMWF model. Front. Earth Sci. 6, 137 (2018). https://doi.org/10.3389/feart.2018.00137

    Article  Google Scholar 

  12. Gross, M., Wan, H., Rasch, P.J., Caldwell, P.M., Williamson, D.L., Klocke, D., Jablonowski, C., Thatcher, D.R., Wood, N., Cullen, M., Beare, B., Willett, M., Lemarié, F., Blayo, E., Malardel, S., Termonia, P., Gassmann, A., Lauritzen, P.H., Johansen, H., Zarzycki, C.M., Sakaguchi, K., Leung, R.: Physics-dynamics coupling in weather, climate, and earth system models: Challenges and recent progress. Mon. Weather Rev. 146(11), 3505–3544 (2018). https://doi.org/10.1175/MWR-D-17-0345.1

    Article  Google Scholar 

  13. Kevrekidis, I.G., Samaey, G.: Equation-free multiscale computation: Algorithms and applications. Annu. Rev. Phys. Chem. 60, 321–344 (2009)

    Article  Google Scholar 

  14. Abhyankar, S., Constantinescu, E.M., Smith, B.F., Flueck, A.J., Maldonado, D.A.: Parallel dynamics simulation using a Krylov-Schwarz linear solution scheme. IEEE Transactions on Smart Grid 8(3), 1378–1386 (2016)

    Article  Google Scholar 

  15. Venkatraman, R., Khaitan, S.K., Ajjarapu, V.: Dynamic co-simulation methods for combined transmission-distribution system with integration time step impact on convergence. IEEE Trans. Power Syst. 34(2), 1171–1181 (2018)

    Article  Google Scholar 

  16. Girard, C., Delage, Y.: Stable schemes for nonlinear vertical diffusion in atmospheric circulation models. Mon. Weather Rev. 118(3), 737–745 (1990). https://doi.org/10.1175/1520-0493(1990)118<0737:SSFNVD>2.0.CO;2

    Article  Google Scholar 

  17. Connors, J.M., Howell, J.S., Layton, W.J.: Partitioned time stepping for a parabolic two domain problem. SIAM J. Numer. Anal. 47(5), 3526–3549 (2009). https://doi.org/10.1137/080740891

    Article  MathSciNet  MATH  Google Scholar 

  18. Connors, J.M., Howell, J.S., Layton, W.J.: Decoupled time stepping methods for fluid-fluid interaction. SIAM J. Numer. Anal. 50(3), 1297–1319 (2012). https://doi.org/10.1137/090773362

    Article  MathSciNet  MATH  Google Scholar 

  19. Connors, J.M., Miloua, A.: Partitioned time discretization for parallel solution of coupled ODE systems. BIT Numer. Math. 51(2), 253–273 (2011). https://doi.org/10.1007/s10543-010-0295-z

    Article  MathSciNet  MATH  Google Scholar 

  20. Aggul, M., Connors, J.M., Erkmen, D., Labovsky, A.E.: A defect-deferred correction method for fluid-fluid interaction. SIAM J. Numer. Anal. 56(4), 2484–2512 (2018). https://doi.org/10.1137/17M1148219

    Article  MathSciNet  MATH  Google Scholar 

  21. Zhang, H., Liu, Z., Constantinescu, E., Jacob, R.: Stability analysis of interface conditions for ocean-atmosphere coupling. J. Sci. Comput. 84(3), 1–25 (2020). https://doi.org/10.1007/s10915-020-01293-y

    Article  MathSciNet  MATH  Google Scholar 

  22. Godunov, S.K., Ryaben’kii, V.S.: Spectral stability criteria of boundary value problems for non-self-adjoint difference equations. Russ. Math. Surv. 18(3), 1–12 (1963)

    Article  Google Scholar 

  23. Kreiss, H.-O.: Stability theory for difference approximations of mixed initial boundary value problems, I. Math. Comput. 22(104), 703–714 (1968)

    Article  MathSciNet  MATH  Google Scholar 

  24. Osher, S.: Stability of difference approximations of dissipative type for mixed initial-boundary value problems. Math. Comput. 23, 335 (1969). https://doi.org/10.1090/S0025-5718-1969-0246530-8

    Article  MathSciNet  MATH  Google Scholar 

  25. Gustafsson, B., Kreiss, H.-O., Sundström, A.: Stability theory of difference approximations for mixed initial boundary value problems, II. Math. Comput. 26(119), 649–649 (1972). https://doi.org/10.1090/S0025-5718-1972-0341888-3

    Article  MathSciNet  MATH  Google Scholar 

  26. Coco, A., Russo, G.: Second order finite-difference ghost-point multigrid methods for elliptic problems with discontinuous coefficients on an arbitrary interface. J. Comput. Phys. 361, 299–330 (2018). https://doi.org/10.1016/j.jcp.2018.01.016

    Article  MathSciNet  MATH  Google Scholar 

  27. Yu, S., Zhou, Y., Wei, G.W.: Matched interface and boundary (MIB) method for elliptic problems with sharp-edged interfaces. J. Comput. Phys. 224(2), 729–756 (2007). https://doi.org/10.1016/j.jcp.2006.10.030

    Article  MathSciNet  MATH  Google Scholar 

  28. Li, Z.: A fast iterative algorithm for elliptic interface problems. SIAM J. Numer. Anal. 35(1), 230–254 (1998). https://doi.org/10.1137/S0036142995291329

    Article  MathSciNet  MATH  Google Scholar 

  29. Quarteroni, A., Valli, A.: Domain Decomposition Methods for Partial Differential Equations. Oxford University Press, Oxford (1999)

    MATH  Google Scholar 

  30. Benamou, J.-D.: A domain decomposition method with coupled transmission conditions for the optimal control of systems governed by elliptic partial differential equations. SIAM J. Numer. Anal. 33(6), 2401–2416 (1996). https://doi.org/10.1137/S0036142994267102

    Article  MathSciNet  MATH  Google Scholar 

  31. Discacciati, M.: Domain decomposition methods for the coupling of surface and groundwater flows. Technical report, EPFL (2004)

    Google Scholar 

  32. Jiang, B.: A parallel domain decomposition method for coupling of surface and groundwater flows. Comput. Methods Appl. Mech. Eng. 198(9), 947–957 (2009). https://doi.org/10.1016/j.cma.2008.11.001

    Article  MathSciNet  MATH  Google Scholar 

  33. Discacciati, M., Quarteroni, A.: Analysis of a domain decomposition method for the coupling of Stokes and Darcy equations. In: Brezzi, F., Buffa, A., Corsaro, S., Murli, A. (eds.) Numerical Mathematics and Advanced Applications, pp. 3–20. Springer, Milano (2003)

    Chapter  MATH  Google Scholar 

  34. Tlupova, S.: A domain decomposition solution of the Stokes-Darcy system in 3D based on boundary integrals. J. Comput. Phys. 450, 110824 (2022). https://doi.org/10.1016/j.jcp.2021.110824

    Article  MathSciNet  MATH  Google Scholar 

  35. Hughes, G.O., Griffiths, R.W.: Horizontal convection. Annu. Rev. Fluid Mech. 40(1), 185–208 (2008). https://doi.org/10.1146/annurev.fluid.40.111406.102148

    Article  MathSciNet  MATH  Google Scholar 

  36. Liu, W.T., Katsaros, K.B., Businger, J.A., Liu, W.T., Katsaros, K.B., Businger, J.A.: Bulk parameterization of air-sea exchanges of heat and water vapor including the molecular constraints at the interface. J. Atmos. Sci. 36(9), 1722–1735 (1979). https://doi.org/10.1175/1520-0469(1979)036<1722:BPOASE>2.0.CO;2

    Article  Google Scholar 

  37. Smith, S.D.: Coefficients for sea surface wind stress, heat flux, and wind profiles as a function of wind speed and temperature. Journal of Geophysical Research: Oceans 93(C12), 15467–15472 (1988). https://doi.org/10.1029/JC093iC12p15467

    Article  Google Scholar 

  38. Fairall, C.W., Bradley, E.F., Rogers, D.P., Edson, J.B., Young, G.S.: Bulk parameterization of air-sea fluxes for tropical ocean global atmosphere coupled-ocean atmosphere response experiment. J. Geophys. Res. C: Oceans 101(C2), 3747–3764 (1996). https://doi.org/10.1029/95JC03205

    Article  Google Scholar 

  39. Yaglom, A.: Fluctuation spectra and variances in convective turbulent boundary layers: A reevaluation of old models. Phys. Fluids 6(2), 962–972 (1994). https://doi.org/10.1063/1.868328

    Article  MathSciNet  MATH  Google Scholar 

  40. Banks, J.W., Sjögreen, B.: A normal mode stability analysis of numerical interface conditions for fluid/structure interaction. Communications in Computational Physics 10(2), 279–304 (2011). https://doi.org/10.4208/cicp.060210.300910a

    Article  MathSciNet  MATH  Google Scholar 

  41. Farhat, C., van der Zee, K.G., Geuzaine, P.: Provably second-order time-accurate loosely-coupled solution algorithms for transient nonlinear computational aeroelasticity. Comput. Methods Appl. Mech. Eng. 195(17–18), 1973–2001 (2006). https://doi.org/10.1016/j.cma.2004.11.031

    Article  MathSciNet  MATH  Google Scholar 

  42. Causin, P., Gerbeau, J.F., Nobile, F.: Added-mass effect in the design of partitioned algorithms for fluid-structure problems. Comput. Methods Appl. Mech. Eng. 194(42–44), 4506–4527 (2005). https://doi.org/10.1016/j.cma.2004.12.005

    Article  MathSciNet  MATH  Google Scholar 

  43. Bazilevs, Y., Calo, V.M., Hughes, T.J.R., Zhang, Y.: Isogeometric fluid-structure interaction: Theory, algorithms, and computations. Comput. Mech. 43(1), 3–37 (2008). https://doi.org/10.1007/s00466-008-0315-x

    Article  MathSciNet  MATH  Google Scholar 

  44. Degroote, J., Bathe, K.J., Vierendeels, J.: Performance of a new partitioned procedure versus a monolithic procedure in fluid-structure interaction. Comput. Struct. 87(11–12), 793–801 (2009). https://doi.org/10.1016/j.compstruc.2008.11.013

    Article  Google Scholar 

Download references

Funding

This material is based upon work supported by the U.S. Department of Energy, Office of Science, Office of Advanced Scientific Computing Research and Office of Biological and Environmental Research, Scientific Discovery through Advanced Computing (SciDAC) program under contract number DE-AC02-06CH11357.

Author information

Authors and Affiliations

Authors

Contributions

All authors contributed to the study conception and design. Analysis were performed by Hong Zhang and Zhengyu Liu. The first draft of the manuscript was written by Hong Zhang and all authors commented on previous versions of the manuscript. All authors read and approved the final manuscript.

Corresponding author

Correspondence to Hong Zhang.

Ethics declarations

Competing Interests

The authors have no relevant financial or non-financial interests to disclose

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

This material is based upon work supported by the U.S. Department of Energy, Office of Science, Office of Advanced Scientific Computing Research, under contract DE-AC02-06CH11357, and by the Office of Biological and Environmental Research, Scientific Discovery through Advanced Computing (SciDAC) program, through the Coupling Approaches for Next-Generation Architectures (CANGA) project.

Rights and permissions

Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, H., Liu, Z., Constantinescu, E. et al. Stability Analysis of Coupled Advection-Diffusion Models with Bulk Interface Condition. J Sci Comput 93, 33 (2022). https://doi.org/10.1007/s10915-022-01983-9

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10915-022-01983-9

Keywords

Mathematics Subject Classification