Abstract
In this paper, we study nonlinear filtering problems via solving their corresponding Zakai equations. Using the splitting-up technique, we approximate the Zakai equation with two equations consisting of a first-order stochastic partial differential equation and a deterministic second-order partial differential equation. For the splitting-up equations, we use a spectral Galerkin method for the spatial discretization and a finite difference scheme for the temporal discretization. The main results are an error estimate for the semi-discretized scheme with respect to the spatial variable, and an error estimate for the full discretized scheme. To improve the numerical performance, we apply an adaptive technique to accurately locate the support domain of the solution in each time iteration. Finally, we present numerical experiments to demonstrate our theoretical analysis.









Similar content being viewed by others
Data Availability
Enquiries about data availability should be directed to the authors.
References
Ahmed, N.U., Radaideh, S.M.: A powerful numerical technique solving Zakai equation for nonlinear filtering. Dynam. Control 7(3), 293–308 (1997). https://doi.org/10.1023/A:1008206719489
Bain, A., Crisan, D.: Fundamentals of stochastic filtering, Stochastic Modelling and Applied Probability, vol. 60. Springer, New York (2009). https://doi.org/10.1007/978-0-387-76896-010.1007/978-0-387-76896-0
Baker, S., Poskar, H., Schreiber, F., Junker, B.: An improved constraint filtering technique for inferring hidden states and parameters of a biological model. Bioinformatics (Oxford, England) 29, 1052–1059 (2013). https://doi.org/10.1093/bioinformatics/btt097
Bao, F., Cao, Y., Webster, C., Zhang, G.: A hybrid sparse-grid approach for nonlinear filtering problems based on adaptive-domain of the Zakai equation approximations. SIAM/ASA J. Uncertain. Quantif. 2(1), 784–804 (2014). https://doi.org/10.1137/140952910
Beneš, V.E.: Exact finite-dimensional filters for certain diffusions with nonlinear drift. Stochastics 5(1–2), 65–92 (1981). https://doi.org/10.1080/17442508108833174
Bensoussan, A.: On a general class of stochastic partial differential equations. Stochastic Hydrology & Hydraulics 1(4), 297–302 (1987)
Bensoussan, A., Glowinski, R., Răşcanu, A.: Approximation of the Zakai equation by the splitting up method. SIAM J. Control. Optim. 28(6), 1420–1431 (1990). https://doi.org/10.1137/0328074
Bensoussan, A., Keppo, J., Sethi, S.: Optimal consumption and portfolio decisions with partially observed real prices. Math. Financ. 19, 215–236 (2009). https://doi.org/10.1111/j.1467-9965.2009.00362.x
Blömker, D., Schillings, C., Wacker, P., Weissmann, S.: Well posedness and convergence analysis of the ensemble Kalman inversion. Inverse Prob. 35(8), 085007, 32 (2019). https://doi.org/10.1088/1361-6420/ab149c
Bolic, M., Djuric, P.M.: Sangjin Hong: Resampling algorithms and architectures for distributed particle filters. IEEE Trans. Signal Process. 53(7), 2442–2450 (2005). https://doi.org/10.1109/TSP.2005.849185
Chen, D., Yu, Y., Xu, L., Liu, X.: Kalman filtering for discrete stochastic systems with multiplicative noises and random two-step sensor delays. Discrete Dyn. Nat. Soc. 2015, 1–11 (2015). https://doi.org/10.1155/2015/809734
Chen, J., Zhu, Q., Liu, Y.: Modified Kalman filtering based multi-step-length gradient iterative algorithm for ARX models with random missing outputs. Automatica J. IFAC 118, 109034, 8 (2020). https://doi.org/10.1016/j.automatica.2020.109034
Crisan, D.: Exact rates of convergence for a branching particle approximation to the solution of the Zakai equation. Ann. Probab. 31(2), 693–718 (2003). https://doi.org/10.1214/aop/1048516533
Crisan, D., Gaines, J., Lyons, T.: Convergence of a branching particle method to the solution of the Zakai equation. SIAM J. Appl. Math. 58(5), 1568–1590 (1998). https://doi.org/10.1137/S0036139996307371
Crisan, D., Obanubi, O.: Particle filters with random resampling times. Stochastic Process. Appl. 122(4), 1332–1368 (2012). https://doi.org/10.1016/j.spa.2011.12.012
Da Prato, G., Kunstmann, P.C., Lasiecka, I., Lunardi, A., Schnaubelt, R., Weis, L.: Functional analytic methods for evolution equations, Lecture Notes in Mathematics, vol. 1855. Springer-Verlag, Berlin (2004). https://doi.org/10.1007/b100449. Edited by M. Iannelli, R. Nagel and S. Piazzera
Djogatović, M.S., Stanojević, M.J., Mladenović, N.: A variable neighborhood search particle filter for bearings-only target tracking. Computers & Operations Research 52, 192 – 202 (2014). https://doi.org/10.1016/j.cor.2013.11.013. http://www.sciencedirect.com/science/article/pii/S030505481300333X. Recent advances in Variable neighborhood search
Dong, W., Luo, X., Yau, S.S.T.: Solving nonlinear filtering problems in real time by Legendre Galerkin spectral method. IEEE Trans. Automat. Control 66(4), 1559–1572 (2021)
Weinan, E., Han, J., Jentzen, A.: Algorithms for solving high dimensional PDEs: from nonlinear monte carlo to machine learning. Nonlinearity 35(1), 278–310 (2021). https://doi.org/10.1088/1361-6544/ac337f
Elliott, R.J., Glowinski, R.: Approximations to solutions of the Zakai filtering equation. Stochastic Anal. Appl. 7(2), 145–168 (1989). https://doi.org/10.1080/07362998908809174
Evensen, G.: Sequential data assimilation with a nonlinear quasi-geostrophic model using monte carlo methods to forecast error statistics. J. Geophys. Res. 99, 10143–10162 (1994)
Evensen, G., et al.: Data assimilation: the ensemble Kalman filter, vol. 2. Springer (2009)
Florchinger, P., Le Gland, F.: Time-discretization of the Zakai equation for diffusion processes observed in correlated noise. Stochastics Stochastics Rep. 35(4), 233–256 (1991). https://doi.org/10.1080/17442509108833704
Frey, R., Schmidt, T., Xu, L.: On Galerkin approximations for the Zakai equation with diffusive and point process observations. SIAM J. Numer. Anal. 51(4), 2036–2062 (2013). https://doi.org/10.1137/110837395
Gobet, E., Pagès, G., Pham, H., Printems, J.: Discretization and simulation of the Zakai equation. SIAM J. Numer. Anal. 44(6), 2505–2538 (2006). https://doi.org/10.1137/050623140
Gottlieb, D.: Numerical analysis of spectral methods : theory and applications. Society For Industrial And Applied Mathematics (1977)
Gyöngy, I., Krylov, N.: On the splitting-up method and stochastic partial differential equations. Ann. Probab. 31(2), 564–591 (2003). https://doi.org/10.1214/aop/1048516528
Hairer, M., Stuart, A., Voss, J.: Signal processing problems on function space: Bayesian formulation, stochastic PDEs and effective MCMC methods. In: The Oxford handbook of nonlinear filtering, pp. 833–873. Oxford Univ. Press, Oxford (2011)
Han, X., Li, J., Xiu, D.: Error analysis for numerical formulation of particle filter. Discrete Contin. Dyn. Syst. Ser. B 20(5), 1337–1354 (2015). https://doi.org/10.3934/dcdsb.2015.20.1337
Hu, J., Hu, X.: Nonlinear filtering in target tracking using cooperative mobile sensors. Automatica 46(12), 2041–2046 (2010). https://doi.org/10.1016/j.automatica.2010.08.016
Inoue, A., Nakano, Y., Anh, V.: Linear filtering of systems with memory and application to finance. J. Appl. Math. Stoch. Anal. 2006, 1–26 (2006). https://doi.org/10.1155/JAMSA/2006/53104
Ito, K.: Approximation of the zakai equation for nonlinear filtering. Siam Journal on Control and Optimization - SIAM J CONTR OPTIMIZAT 34, 620–634 (1996). https://doi.org/10.1137/S0363012993254783
Jazwinski, A.H.: Stochastic Processes and Filtering Theory, Mathematics in Science and Engineering, vol. 64. Elsevier (1970). https://doi.org/10.1016/S0076-5392(09)60378-7
Julier, S., Jr., L., : On kalman filter with nonlinear equality constraints. Signal Processing, IEEE Transactions on 55, 2774–2784 (2007). https://doi.org/10.1109/TSP.2007.893949
Kai, X., Liangdong, L., Yiwu, L.: Robust extended Kalman filtering for nonlinear systems with multiplicative noises. Optimal Control Appl. Methods 32(1), 47–63 (2011). https://doi.org/10.1002/oca.928
Kalman, R.E., Bucy, R.S.: New results in linear filtering and prediction theory. Trans. ASME Ser. D. J. Basic Engrg. 83, 95–108 (1961)
Kim, S., Deshpande, V.M., Bhattacharya, R.: Robust Kalman filtering with probabilistic uncertainty in system parameters. IEEE Control Syst. Lett. 5(1), 295–300 (2021)
Le Gland, F.: Splitting-up approximation for SPDEs and SDEs with application to nonlinear filtering. In: Stochastic partial differential equations and their applications (Charlotte, NC, 1991), Lect. Notes Control Inf. Sci., vol. 176, pp. 177–187. Springer, Berlin (1992). https://doi.org/10.1007/BFb0007332
Li, J., Hu, J., Chen, D., Wu, Z.: Distributed extended Kalman filtering for state-saturated nonlinear systems subject to randomly occurring cyberattacks with uncertain probabilities. Adv. Difference Equ. 2020, 437 (2020). https://doi.org/10.1186/s13662-020-02896-3
Llopis, F.P., Kantas, N., Beskos, A., Jasra, A.: Particle filtering for stochastic Navier-Stokes signal observed with linear additive noise. SIAM J. Sci. Comput. 40(3), A1544–A1565 (2018). https://doi.org/10.1137/17M1151900
Luo, X., Yau, S.S.T.: Complete real time solution of the general nonlinear filtering problem without memory. IEEE Trans. Automat. Control 58(10), 2563–2578 (2013). https://doi.org/10.1109/TAC.2013.2264552
Luo, X., Yau, S.S.T.: Hermite spectral method to 1-D forward Kolmogorov equation and its application to nonlinear filtering problems. IEEE Trans. Automat. Control 58(10), 2495–2507 (2013). https://doi.org/10.1109/TAC.2013.2259975
Majda, A.J., Tong, X.T.: Performance of ensemble Kalman filters in large dimensions. Comm. Pure Appl. Math. 71(5), 892–937 (2018). https://doi.org/10.1002/cpa.21722
Masreliez, C., Martin, R.: Robust bayesian estimation for the linear model and robustifying the kalman filter. IEEE Trans. Autom. Control 22(3), 361–371 (1977). https://doi.org/10.1109/TAC.1977.1101538
Nagata, M., Sawaragi, Y.: Error analysis of the Schmidt-Kalman filter. Internat. J. Systems Sci. 7(7), 769–778 (1976). https://doi.org/10.1080/00207727608941963
Nakano, Y.: Kernel-based collocation methods for Zakai equations. Stoch. Partial Differ. Equ. Anal. Comput. 7(3), 476–494 (2019). https://doi.org/10.1007/s40072-019-00132-y
Özbek, L.: An adaptive extended Kalman filtering approach to nonlinear dynamic gene regulatory networks via short gene expression time series. Commun. Fac. Sci. Univ. Ank. Ser. A1. Math. Stat. 69(2), 1205–1214 (2020). https://doi.org/10.31801/cfsuasmas.749624
Pardoux, E.: Stochastic partial differential equations and filtering of diffusion processes. Stochastics 3(2), 127–167 (1979). https://doi.org/10.1080/17442507908833142
Pardoux, E.: Équations du filtrage non linéaire de la prédiction et du lissage. Stochastics An International Journal of Probability and Stochastic Processes 6, 193–231 (1982). https://doi.org/10.1080/17442508208833204
Ruzayqat, H.M., Jasra, A.: Unbiased estimation of the solution to Zakai’s equation. Monte Carlo Methods Appl. 26(2), 113–129 (2020). https://doi.org/10.1515/mcma-2020-2061
Shen, J., Tang, T., Wang, L.L.: Spectral methods: algorithms, analysis and applications, vol. 41. Springer Science & Business Media (2011)
Song, W., Wang, Z., Wang, J., Alsaadi, F.E., Shan, J.: Particle filtering for nonlinear/non-Gaussian systems with energy harvesting sensors subject to randomly occurring sensor saturations. IEEE Trans. Signal Process. 69, 15–27 (2021). https://doi.org/10.1109/TSP.2020.3042951
Song, W., Wang, Z., Wang, J., Shan, J.: Particle filtering for a class of cyber-physical systems under Round-Robin protocol subject to randomly occurring deception attacks. Inform. Sci. 544, 298–307 (2021). https://doi.org/10.1016/j.ins.2020.07.047
Thomée, V.: Galerkin finite element methods for parabolic problems, Springer Series in Computational Mathematics, vol. 25, second edn. Springer-Verlag, Berlin (2006)
Zakai, M.: On the optimal filtering of diffusion processes. Zeitschrift für Wahrscheinlichkeitstheorie und Verwandte Gebiete 11(3), 230–243 (1969). https://doi.org/10.1007/BF00536382
Zhang, G., Lan, J., Zhang, L., He, F., Li, S.: Filtering in pairwise markov model with student’s t non-stationary noise with application to target tracking. IEEE Trans. Signal Process. 69, 1627–1641 (2021). https://doi.org/10.1109/TSP.2021.3062170
Zou, Y., Ghanem, R.: A multiscale data assimilation with the ensemble Kalman filter. Multiscale Model. Simul. 3(1), 131–150 (2004/05). https://doi.org/10.1137/030601168
Funding
The authors have not disclosed any funding.
Author information
Authors and Affiliations
Corresponding author
Ethics declarations
Competing Interests
The authors have not disclosed any competing interests.
Additional information
Publisher's Note
Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
The research of Yongkui Zou and Ran Zhang is partly supported by the National Key R &D Program (2020YFA0714100, 2020YFA0713601), NSFC (12171199, 11971198), Jilin Provincial Department of science and technology (20210201015GX), and the Key Laboratory of Symbolic Computation and Knowledge Engineering of Ministry of Education at Jilin University. Research of Yanzhao Cao is partially supported by U.S. Department of Energy under grant number DE-SC0022253.
Rights and permissions
Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.
About this article
Cite this article
Zhang, F., Zou, Y., Chai, S. et al. Splitting-up Spectral Method for Nonlinear Filtering Problems with Correlation Noises. J Sci Comput 93, 25 (2022). https://doi.org/10.1007/s10915-022-01994-6
Received:
Revised:
Accepted:
Published:
DOI: https://doi.org/10.1007/s10915-022-01994-6