Abstract
Multi-dimensional image recovery from incomplete data is a fundamental problem in data processing. Due to its advantage of capturing the correlations between any modes of the multi-dimensional image, i.e., the target tensor, the fully-connected tensor network (FCTN) decomposition has recently shown promising performance on multi-dimensional image recovery. However, FCTN decomposition suffers from computational deficiency, especially for large-scale multi-dimensional images. To address this deficiency, we propose a learnable transform-based FCTN model (termed as T-FCTN), which enjoys the remarkable advantage of FCTN decomposition with cheap computational cost. More concretely, we learn the semi-orthogonal transforms along each mode of the target tensor to project the large-scale tensor \({\mathcal {X}}\) \(\in \) \({\mathbb {R}}^{I\times {I}\times {\cdots }\times {I}}\) into a small-scale essential tensor \({\mathcal {E}}\) \(\in \) \({\mathbb {R}}^{r\times {r}\times {\cdots }\times {r}}\), and then apply FCTN decomposition on the small-scale essential tensor. To tackle the proposed model, we develop an efficient proximal alternating minimization (PAM)-based algorithm with theoretical convergence guarantee. Moreover, the computational complexity of PAM for T-FCTN is \({\mathcal {O}}{(N\sum _{k=2}^N{r^k}{R^{k(N-k)+k-1}}}+{N{r^{N-1}}R^{2(N-1)}+N{R}^{3(N-1)}+N{\sum _{k=1}^N{{r^k}{I}^{N-k+1}}})}\) at each iteration, which is significantly lower than \({\mathcal {O}}{(N\sum _{k=2}^N{I^k}{R^{k(N-k)+k-1}}}+N{I^{N-1}}R^{2(N-1)}+{N{R}^{3(N-1)})}\) of PAM for FCTN when \(r\ll I\). Extensive numerical experiments on color videos and light field images illustrate the superiority of the proposed method over other state-of-the-art methods in terms of quality metrics, visual quality, and running time.






Similar content being viewed by others
Data Availability
Enquiries about data availability should be directed to the authors.
Notes
TR is also called MPS with periodic boundary conditions in physics [32].
FCTN is also called complete graph tensor network states (CTNS) in physics [39].
The data is available at http://www.brl.ntt.co.jp/people/akisato/saliency3.html and http://trace.eas.asu.edu/yuv/.
The data is available at http://hci-lightfield.iwr.uni-heidelberg.de.
References
Che, M., Wei, Y., Yan, H.: An efficient randomized algorithm for computing the approximate tucker decomposition. J. Sci. Comput. (2021). https://doi.org/10.1007/s10915-021-01545-510.1007
Li, J.-F., Li, W., Vong, S.-W., Luo, Q.-L., Xiao, M.: A Riemannian optimization approach for solving the generalized eigenvalue problem for nonsquare matrix pencils. J. Sci. Comput. (2020). https://doi.org/10.1007/s10915-020-01173-5
Wang, Y., Yin, W., Zeng, J.: Global convergence of ADMM in nonconvex nonsmooth optimization. J. Sci. Comput. 78, 29–63 (2019)
Zhao X, Bai M, Ng MK: Nonconvex optimization for robust tensor completion from grossly sparse observations. J. Sci. Comput. 85(46) (2020)
Li, M., Li, W., Chen, Y., Xiao, M.: The nonconvex tensor robust principal component analysis approximation model via the weighted \(\ell _p\)-norm regularization. J. Sci. Comput. (2021). https://doi.org/10.1007/s10915-021-01679-6
Liu, J., Musialski, P., Wonka, P., Ye, J.: Tensor completion for estimating missing values in visual data. IEEE Trans. Pattern Anal. Mach. Intell. 35(1), 208–220 (2013)
Wang, A., Zhou, G., Zhao, Q.: Guaranteed robust tensor completion via *L-SVD with applications to remote sensing data. Remote Sens. 13(18), e3671 (2021)
Zhang, H., Zhao, X.-L., Jiang, T.-X., Ng, M.K., Huang, T.-Z.: Multiscale feature tensor train rank minimization for multidimensional image recovery. IEEE Trans. Cybern. (2021). https://doi.org/10.1109/TCYB.2021.3108847
Zhang, X., Ng, M.K.: Low rank tensor completion with Poisson observations. IEEE Trans. Pattern Anal. Mach. Intell. (2021). https://doi.org/10.1109/TPAMI.2021.3059299
Chen, Z., Zhou, G., Zhao, Q.: Hierarchical factorization strategy for high-order tensor and application to data completion. IEEE Signal Process. Lett. 28, 1255–1259 (2021)
Hou, J., Zhang, F., Qiu, H., Wang, J., Wang, Y., Meng, D.: Robust low-tubal-rank tensor recovery from binary measurements. IEEE Trans. Pattern Anal. Mach. Intell. 44(8), 4355–4373 (2021)
Zhao, X.-L., Yang, J.-H., Ma, T.-H., Jiang, T.-X., Ng, M.K., Huang, T.-Z.: Tensor completion via complementary global, local, and nonlocal priors. IEEE Trans. Image Process. 31, 984–999 (2022)
Kolda, T.G., Bader, B.W.: Tensor decompositions and applications. SIAM Rev. 51(3), 455–500 (2009)
De Lathauwer, L., De Moor, B., Vandewalle, J.: A multilinear singular value decomposition. SIAM J. Matrix Anal. Appl. 21(4), 1253–1278 (2000)
Xu, Y., Hao, R., Yin, W., Su, Z.: Parallel matrix factorization for low-rank tensor completion. Inverse Probl. Imaging 9(2), 601–624 (2015)
Zhao, Q., Zhang, L., Cichocki, A.: Bayesian CP factorization of incomplete tensors with automatic rank determination. IEEE Trans. Pattern Anal. Mach. Intell. 37(9), 1751–1763 (2015)
Fu, X., Ibrahim, S., Wai, H.-T., Gao, C., Huang, K.: Block-randomized stochastic proximal gradient for low-rank tensor factorization. IEEE Trans. Signal Process. 68, 2170–2185 (2020)
Kilmer, M.E., Martin, C.D.: Factorization strategies for third-order tensors. Linear Algebra Appl. 435(3), 641–658 (2011)
Kilmer, M.E., Braman, K., Hao, N., Hoover, R.C. Third-order tensors as operators on matrices: a theoretical and computational framework with applications in imaging. SIAM J. Matrix Anal. Appl., 34 (1) (2013)
Kilmer, M.E., Horesh, L., Avron, H., Newman, E.: Tensor-tensor algebra for optimal representation and compression of multiway data. Proc. Natl. Acad. Sci. 118(28), e2015851118 (2021)
Song, G., Ng, M.K., Zhang, X.: Robust tensor completion using transformed tensor singular value decomposition. Numer. Linear Algebra Appl. 27(3), e2299 (2020)
Kernfeld, E., Kilmer, M.E., Aeron, S.: Tensor-tensor products with invertible linear transforms. Linear Algebra Appl. 485, 545–570 (2015)
Lu, C., Peng, X., Wei, Y. : Low-rank tensor completion with a new tensor nuclear norm induced by invertible linear transforms. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 5989–5997 (2019)
Li, B.-Z., Zhao, X.-L., Ji, T.-Y., Zhang, X.-J., Huang, T.-Z. Nonlinear transform induced tensor nuclear norm for tensor completion. J. Sci. Comput., 92(3) (2022)
Jiang, T.-X., Ng, M.K., Zhao, X.-L., Huang, T.-Z.: Framelet representation of tensor nuclear norm for third-order tensor completion. IEEE Trans. Image Process. 29, 7233–7244 (2020)
Kong, H., Lu, C., Lin, Z.: Tensor Q-rank: new data dependent definition of tensor rank. Mach. Learn. 110, 1867–1900 (2021)
Luo, Y.-S., Zhao, X.-L., Jiang, T.-X., Chang, Y., Ng, M.K., Li, C.: Self-supervised nonlinear transform-based tensor nuclear norm for multi-dimensional image recovery. IEEE Trans. Image Process. 31, 3793–3808 (2022)
Qin, W., Wang, H., Zhang, F., Wang, J., Luo, X., Huang, T.: Low-rank high-order tensor completion with applications in visual data. IEEE Trans. Image Process. 31, 2433–2448 (2022)
Anderson, P.W.: New approach to the theory of superexchange interactions. Phys. Rev. 115, 2–13 (1959)
White, S.R.: Density matrix formulation for quantum renormalization groups. Phys. Rev. Lett. 69, 2863–2866 (1992)
White, S.R., Huse, D.A.: Numerical renormalization-group study of low-lying eigenstates of the antiferromagnetic S=1 Heisenberg chain. Phys. Rev. B 48, 3844–3852 (1993)
Orús, R.: A practical introduction to tensor networks: matrix product states and projected entangled pair states. Ann. Phys. 349, 117–158 (2014)
Oseledets, I.V.: Tensor-train decomposition. SIAM J. Sci. Comput. 33(5), 2295–2317 (2011)
Zhao, Q., Zhou, G., Xie, S., Zhang, L., Cichocki, A.: Tensor ring decomposition. arxiv:1606.05535 (2016)
Bengua, J.A., Phien, H.N., Tuan, H.D., Do, M.N.: Efficient tensor completion for color image and video recovery: low-rank tensor train. IEEE Trans. Image Process. 26(5), 2466–2479 (2017)
Chen, C., Wu, Z.-B., Chen, Z.-T., Zheng, Z.-B., Zhang, X.-J.: Auto-weighted robust low-rank tensor completion via tensor-train. Inf. Sci. 567, 100–115 (2021)
Yuan, L., Li, C., Mandic, D., Cao, J., Zhao, Q.: Tensor ring decomposition with rank minimization on latent space: an efficient approach for tensor completion. In: Proceedings of the AAAI Conference on Artificial Intelligence, vol. 33(1), pp. 9151–9158 (2019)
Yu, J., Zhou, G., Sun, W., Xie, S. : Robust to rank selection: low-rank sparse tensor-ring completion. IEEE Trans. Neural Netw. Learn. Syst., pp. 1–15 (2021)
Marti, K.H., Bauer, B., Reiher, M., Troyer, M., Verstraete, F.: Complete-graph tensor network states: a new fermionic wave function ansatz for molecules. New J. Phys. 12(10), e103008 (2010)
Zheng, Y.-B., Huang, T.-Z., Zhao, X.-L., Zhao, Q., Jiang, T.-X.: Fully-connected tensor network decomposition and its application to higher-order tensor completion. In: Proceedings of the AAAI Conference on Artificial Intelligence, vol.bf 35, no. 12, pp. 11 071–11 078 (2021)
Zheng, Y.-B., Huang, T.-Z., Zhao, X.-L., Zhao, Q.: Tensor completion via fully-connected tensor network decomposition with regularized factors. J. Sci. Comput. 92, 1–35 (2022)
Silva, V.D., Lim, L.-H.: Tensor rank and the Ill-Posedness of the best low-rank approximation problem. SIAM J. Matrix Anal. Appl. 30(3), 1084–1127 (2008)
Krishnan, D., Fergus, R.: Fast image deconvolution using Hyper–Laplacian Priors. In: Proceedings of the International Conference on Neural Information Processing Systems, pp. 1033–1041, (2009)
Attouch, H., Bolte, J., Redont, P., Soubeyran, A.: Proximal alternating minimization and projection methods for nonconvex problems: an approach based on the Kurdyka–Łojasiewicz Inequality. Math. Oper. Res. 35(2), 438–457 (2010)
Attouch, H., Bolte, J., Svaiter, B.F.: Convergence of descent methods for semi-algebraic and tame problems: proximal algorithms, forward-backward splitting, and regularized Gauss–Seidel methods. Math. Program. 137, 91–129 (2013)
Bolte, J., Daniilidis, A., Lewis, A., Shiota, M.: Clarke subgradients of stratifiable functions. SIAM J. Optim. 18(2), 556–572 (2007)
Bolte, J., Sabach, S., Teboulle, M.: Proximal alternating linearized minimization for nonconvex and nonsmooth problems. Math. Program. 146, 459–494 (2014)
Xie, Q., Zhao, Q., Meng, D., Xu, Z.: Kronecker-Basis-representation based tensor sparsity and its applications to tensor recovery. IEEE Trans. Pattern Anal. Mach. Intell. 40(8), 1888–1902 (2018)
Yair, N., Michaeli, T. Multi-scale weighted nuclear norm image restoration. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp 3165–3174 (2018)
Wang, Z., Bovik, A., Sheikh, H., Simoncelli, E.: Image quality assessment: from error visibility to structural similarity. IEEE Trans. Image Process. 13(4), 600–612 (2004)
Author information
Authors and Affiliations
Corresponding author
Ethics declarations
Conflicts of interest
The authors have not disclosed any competing interests.
Additional information
Publisher's Note
Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
This research is supported by NSFC (Nos. 61876203, 12171072), the Applied Basic Research Project of Sichuan Province (No. 2021YJ0107), the Key Project of Applied Basic Research in Sichuan Province (No. 2020YJ0216), and National Key Research and Development Program of China (No. 2020YFA0714001).
Rights and permissions
Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.
About this article
Cite this article
Lyu, CY., Zhao, XL., Li, BZ. et al. Multi-Dimensional Image Recovery via Fully-Connected Tensor Network Decomposition Under the Learnable Transforms. J Sci Comput 93, 49 (2022). https://doi.org/10.1007/s10915-022-02009-0
Received:
Revised:
Accepted:
Published:
DOI: https://doi.org/10.1007/s10915-022-02009-0