Skip to main content
Log in

A New Family of Mixed Method for the Biharmonic Eigenvalue Problem Based on the First Order Equations of Hellan–Herrmann–Johnson Type

  • Published:
Journal of Scientific Computing Aims and scope Submit manuscript

Abstract

In this paper, we consider the numerical approximation of a biharmonic eigenvalue problem by introducing a new family of the mixed method. This method is based on a formulation where the fourth-order eigenproblem is recast as a system of four first-order equations. The optimal convergence rates with \(2k+2\) (\(k\ge 0\) is the degree of the polynomials) of eigenvalue approximation are theoretically derived and numerically verified. The optimal or sub-optimal convergences of the other unknowns are theoretically proved. The new numerical schemes based on the deduced problems can be of lower complicacy, and the framework is fit for various fourth-order eigenvalue problems.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

Data Availability

Enquiries about data availability should be directed to the authors.

Code Availability

The code can be made available on reasonable request.

References

  1. Agmon, S., Douglis, A., Nirenberg, L.: Estimates near the boundary for solutions of elliptic partial differential equations satisfying general boundary conditions. I. Commun. Pure Appl. Math. 12, 623–727 (1959)

    MathSciNet  MATH  Google Scholar 

  2. An, J., Li, H., Zhang, Z.: Spectral-Galerkin approximation and optimal error estimate for biharmonic eigenvalue problems in circular/spherical/elliptical domains. Numer. Algorithms 84(2), 427–455 (2020)

    MathSciNet  MATH  Google Scholar 

  3. An, J., Luo, Z.: A high accuracy spectral method based on the min/max principle for biharmonic eigenvalue problems on a spherical domain. J. Math. Anal. Appl. 439(1), 385–395 (2016)

    MathSciNet  MATH  Google Scholar 

  4. Andreev, A.B., Lazarov, R.D., Racheva, M.R.: Postprocessing and higher order convergence of the mixed finite element approximations of biharmonic eigenvalue problems. J. Comput. Appl. Math. 182(2), 333–349 (2005)

    MathSciNet  MATH  Google Scholar 

  5. Antonietti, P.F., Buffa, A., Perugia, I.: Discontinuous Galerkin approximation of the Laplace eigenproblem. Comput. Methods Appl. Mech. Eng. 195(25–28), 3483–3503 (2006)

    MathSciNet  MATH  Google Scholar 

  6. Babuška, I., Osborn, J.E.: Eigenvalue problems. In: Ciarlet, P.G., Lions, J.-L. (eds.) Handbook of Numerical Analysis, vol. 2. Elsevier Science B.V., North-Holland (1991)

    Google Scholar 

  7. Bauer, F.L., Fike, C.T.: Norms and exclusion theorems. Numer. Math. 2(1), 137–141 (1960)

    MathSciNet  MATH  Google Scholar 

  8. Behrens, E.M., Guzmán, J.: A mixed method for the biharmonic problem based on a system of first-order equations. SIAM J. Numer. Anal. 49(2), 789–817 (2011)

    MathSciNet  MATH  Google Scholar 

  9. Bermúdez, A., Durán, R., Muschietti, M., Rodríguez, R., Solomin, J.: Finite element vibration analysis of fluid-solid systems without spurious modes. SIAM J. Numer. Anal. 32(4), 1280–1295 (1995)

    MathSciNet  MATH  Google Scholar 

  10. Bhattacharyya, P.K., Nataraj, N.: Isoparametric mixed finite element approximation of eigenvalues and eigenvectors of 4th order eigenvalue problems with variable coefficients. ESAIM Math. Model. Numer. Anal. 36(1), 1–32 (2002)

    MathSciNet  MATH  Google Scholar 

  11. Brenner, S.C., Monk, P., Sun, J.: \(C^0\) interior penalty Galerkin method for biharmonic eigenvalue problems. In: Kirby, R.M., Berzins, M., Hesthaven, J.S. (eds.) Spectral and High Order Methods for Partial Differential Equations ICOSAHOM 2014, pp. 3–15. Springer International Publishing, Cham (2015)

    Google Scholar 

  12. Blum, H., Rannacher, R.: On the boundary value problem of the biharmonic operator on domains with angular corners. Math. Methods Appl. Sci. 2(4), 556–581 (1980)

    MathSciNet  MATH  Google Scholar 

  13. Cakoni, F., Colton, D., Meng, S., Monk, P.: Stekloff eigenvalues in inverse scattering. SIAM J. Appl. Math. 76(4), 1737–1763 (2016)

    MathSciNet  MATH  Google Scholar 

  14. Canuto, C.: Eigenvalue approximations by mixed methods. RAIRO Anal. Numér. 12(1), 27–50 (1978)

    MathSciNet  MATH  Google Scholar 

  15. Carstensen, C., Gallistl, D.: Guaranteed lower eigenvalue bounds for the biharmonic equation. Numer. Math. 126(1), 33–51 (2014)

    MathSciNet  MATH  Google Scholar 

  16. Chen, W., Lin, Q.: Asymptotic expansion and extrapolation for the eigenvalue approximation of the biharmonic eigenvalue problem by Ciarlet-Raviart scheme. Adv. Comput. Math. 27(1), 95–106 (2007)

    MathSciNet  MATH  Google Scholar 

  17. Cockburn, B., Gopalakrishnan, J.: A characterization of hybridized mixed methods for second order elliptic problems. SIAM J. Numer. Anal. 42(1), 283–301 (2004)

    MathSciNet  MATH  Google Scholar 

  18. Gallistl, D.: Morley finite element method for the eigenvalues of the biharmonic operator. IMA J. Numer. Anal. 35(4), 1779–1811 (2015)

    MathSciNet  MATH  Google Scholar 

  19. Giani, S., Hall, E.J.C.: An a posteriori error estimator for hp-adaptive discontinuous Galerkin methods for elliptic eigenvalue problems. Math. Models Methods Appl. Sci. 22(10), 1250030 (2012)

    MathSciNet  MATH  Google Scholar 

  20. Gopalakrishnan, J., Li, F., Nguyen, N.-C., Peraire, J.: Spectral approximations by the HDG method. Math. Comp. 84(293), 1037–1059 (2015)

    MathSciNet  MATH  Google Scholar 

  21. Hecht, F.: New development in FreeFem++. J. Numer. Math. 20(3–4), 251–266 (2012)

    MathSciNet  MATH  Google Scholar 

  22. Hu, J., Huang, Y., Lin, Q.: Lower bounds for eigenvalues of elliptic operators: by nonconforming finite element methods. J. Sci. Comput. 61(1), 196–221 (2014)

    MathSciNet  MATH  Google Scholar 

  23. Ishihara, K.: A mixed finite element method for the biharmonic eigenvalue problems of plate bending. Publ. Res. Inst. Math. Sci. 14(2), 399–414 (1978)

    MathSciNet  MATH  Google Scholar 

  24. Jia, S., Xie, H., Yin, X., Gao, S.: Approximation and eigenvalue extrapolation of biharmonic eigenvalue problem by nonconforming finite element methods. Numer. Methods Partial Differ. Equ. 24(2), 435–448 (2008)

    MathSciNet  MATH  Google Scholar 

  25. Johnson, C.: On the convergence of a mixed finite element method for plate bending problems. Numer. Math. 21(1), 43–62 (1973)

    MathSciNet  MATH  Google Scholar 

  26. Knyazev, A.V., Osborn, J.E.: New a priori FEM error estimates for eigenvalues. SIAM J. Numer. Anal. 43(6), 2647–2667 (2006)

    MathSciNet  MATH  Google Scholar 

  27. Larson, M.G.: A posteriori and a priori error analysis for finite element approximations of self-adjoint elliptic eigenvalue problems. SIAM J. Numer. Anal. 38(2), 608–625 (2000)

    MathSciNet  MATH  Google Scholar 

  28. Li, H., Yang, Y.: \(C^0\)IPG adaptive algorithms for the biharmonic eigenvalue problem. Numer. Algorithms 78(2), 553–567 (2018)

    MathSciNet  MATH  Google Scholar 

  29. Lin, Q., Lin, J.: Finite Element Methods: Accuracy and Improvement. Science Press, Beijing (2006)

    Google Scholar 

  30. Lin, Q., Xie, H.: The asymptotic lower bounds of eigenvalue problems by nonconforming finite element methods. Math. Pract. Theory 42(11), 219–226 (2012)

    MathSciNet  MATH  Google Scholar 

  31. Lin, Q., Xie, H., Xu, J.: Lower bounds of the discretization error for piecewise polynomials. Math. Comput. 83(285), 1–13 (2014)

    MathSciNet  MATH  Google Scholar 

  32. Meng, J., Mei, L.: A \(C^0\) virtual element method for the biharmonic eigenvalue problem. Int. J. Comput. Math. 98(9), 1821–1833 (2021)

    MathSciNet  MATH  Google Scholar 

  33. Meng, J., Mei, L.: The optimal order convergence for the lowest order mixed finite element method of the biharmonic eigenvalue problem. J. Comput. Appl. Math. 402(4), 113783 (2022)

    MathSciNet  MATH  Google Scholar 

  34. Mercier, B., Osborn, J., Rappaz, J., Raviart, P.A.: Eigenvalue approximation by mixed and hybrid methods. Math. Comput. 36(154), 427–453 (1981)

    MathSciNet  MATH  Google Scholar 

  35. Mora, D., Rodríguez, R.: A piecewise linear finite element method for the buckling and the vibration problems of thin plates. Math. Comp. 78(268), 1891–1917 (2009)

    MathSciNet  MATH  Google Scholar 

  36. Rannacher, R.: Nonconforming finite element methods for eigenvalue problems in linear plate theory. Numer. Math. 33(1), 23–42 (1979)

    MathSciNet  MATH  Google Scholar 

  37. Saad, Y., Chelikowsky, J.R., Shontz, S.M.: Numerical methods for electronic structure calculations of materials. SIAM Rev. 52(1), 3–54 (2010)

    MathSciNet  MATH  Google Scholar 

  38. Timoshenko, S., Woinowsky-Krieger, S.: Theory of Plates and Shells, vol. 2. McGraw-Hill, New York (1959)

    MATH  Google Scholar 

  39. Wang, L., Xiong, C., Wu, H., Luo, F.: A priori and a posteriori error analysis for discontinuous Galerkin finite element approximations of biharmonic eigenvalue problems. Adv. Comput. Math 45(5), 2623–2646 (2019)

    MathSciNet  MATH  Google Scholar 

  40. Yang, Y., Lin, Q., Bi, H., Li, Q.: Eigenvalue approximations from below using Morley elements. Adv. Comput. Math 36(3), 443–450 (2012)

    MathSciNet  MATH  Google Scholar 

  41. Yang, Y., Han, J., Bi, H.: Non-conforming finite element methods for transmission eigenvalue problem. Comput. Methods Appl. Mech. Engrg. 307, 144–163 (2016)

    MathSciNet  MATH  Google Scholar 

  42. Zhang, S., Xi, Y., Ji, X.: A multi-level mixed element method for the eigenvalue problem of biharmonic equation. J. Sci. Comput. 75(3), 1415–1444 (2018)

    MathSciNet  MATH  Google Scholar 

  43. Zhang, Y., Bi, H., Yang, Y.: The two-grid discretization of Ciarlet–Raviart mixed method for biharmonic eigenvalue problems. Appl. Numer. Math. 138, 94–113 (2019)

    MathSciNet  MATH  Google Scholar 

Download references

Acknowledgements

The authors would like to thank both referees for their valuable comments and helpful suggestions which improved this paper.

Funding

The work of Y. Li was partially supported by the Scientific Research Plan of Tianjin Municipal Education Committee (2017KJ236), the Humanity and Social Science Youth Foundation of Ministry of Education of China (19YJC630199), and the National Natural Science Foundations of China (NSFC 12101447, 12271395). The work of M. Xie was partially supported by the National Natural Science Foundations of China (NSFC 12001402, 12071343, 12271400). The work of C. Xiong was partially supported by the Beijing Municipal Natural Science Foundation (BMNSF4182059) and the National Natural Science Foundations of China (NSFC 12271035).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Chunguang Xiong.

Ethics declarations

Conflict of interest

This work does not have any conflicts of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendix: The proof of Lemma 3.1

Appendix: The proof of Lemma 3.1

In order to get the best possible estimates, we assume the following elliptic regularity result:

$$\begin{aligned} \Vert u^f\Vert _4\le C\Vert f\Vert _0 \end{aligned}$$
(A.1)

Then we have error equations as follows

$$\begin{aligned} (\varvec{q}^f-\varvec{q}_h^f,\varvec{p}_h) + (u^f-u_h^f,\nabla \cdot \varvec{p}_h)&= 0,, \end{aligned}$$
(A.2a)
$$\begin{aligned} (\underline{\varvec{z}}^f-\underline{\varvec{z}}^f_h,\underline{\varvec{s}}_h) + (\varvec{q}^f-\varvec{q}^f_h,\nabla \cdot \underline{\varvec{s}}_h)&= 0,, \end{aligned}$$
(A.2b)
$$\begin{aligned} -(\varvec{w}^f-\varvec{w}^f_h,\varvec{m}_h) + (\nabla \cdot (\underline{\varvec{z}}^f- \underline{\varvec{z}}^f_h),\varvec{m}_h)&= 0, \end{aligned}$$
(A.2c)
$$\begin{aligned} (\nabla \cdot (\varvec{w}^f-\varvec{w}^f_h), v_h)&= 0, \end{aligned}$$
(A.2d)

for all \((v_h, \varvec{p}_h,\underline{\varvec{s}}_h,\varvec{m}_h) \in V_h\times \varvec{Q}_h\times \underline{\varvec{Z}}_h \times \varvec{W}_h \).

Now we begin to prove Lemma 3.1.

Proof

Using the dual equations (A.2) of the source problem (2.1), we have

$$\begin{aligned} (\Pi ^{V}_hu-u_h,\chi )= & {} (\Pi ^{V}_hu-u_h,\nabla \cdot \tilde{\varvec{w}})\ \ \qquad {(\text {by dual equation }\mathrm{(3.8d)})}\\= & {} (\Pi ^V_hu-u_h,\nabla \cdot \varvec{\Pi }^{RT}\tilde{\varvec{w}})\ \ \quad {(\text {by } \mathrm{(3.1a)} )}\\= & {} -(\varvec{q}^f-\varvec{q}^f_h,\varvec{\Pi }^{RT}\tilde{\varvec{w}})\ \ \qquad (\text {by error equation} (\mathrm{A.2a}))\\= & {} -(\varvec{q}^f-\varvec{q}^f_h,\varvec{\Pi }^{RT}\tilde{\varvec{w}}-\tilde{\varvec{w}})-(\varvec{q}^f-\varvec{q}^f_h,\tilde{\varvec{w}}-\varvec{\Pi }^Q_h\tilde{\varvec{w}})-(\varvec{q}^f-\varvec{q}^f_h,\varvec{\Pi }^Q_h\tilde{\varvec{w}}). \end{aligned}$$

We express the last term \((\varvec{q}^f-\varvec{q}^f_h,\varvec{\Pi }^Q_h\tilde{\varvec{w}})\). By the dual equation (3.8c), we have

$$\begin{aligned} (\varvec{q}^f-\varvec{q}^f_h, \varvec{\Pi }^Q_h\tilde{\varvec{w}})= & {} (\varvec{q}^f-\varvec{q}^f_h, \varvec{\Pi }^Q_h\nabla \cdot {\tilde{\underline{\varvec{z}}}}) \quad (\text { by dual equation } (\mathrm{3.8c}))\\= & {} -(\varvec{q}^f-\varvec{q}^f_h,\nabla \cdot {\underline{\varvec{\Pi }}}^{RT}{\tilde{\underline{\varvec{z}}}})\ \ \quad (\text {by the commutative property }\varvec{\Pi }^Q_h)\\= & {} (\underline{\varvec{z}}^f-\underline{\varvec{z}}^f_h,{\underline{\varvec{\Pi }}}^{RT}{\tilde{\underline{\varvec{z}}}}-{\tilde{\underline{\varvec{z}}}}) + (\underline{\varvec{z}}^f-\underline{\varvec{z}}^f_h,{\tilde{\underline{\varvec{z}}}}).\ \ \quad (\text {by error equation } (\mathrm{A.2b})) \end{aligned}$$

Furthermore, using the integration by parts, we have

$$\begin{aligned} (\underline{\varvec{z}}^f-\underline{\varvec{z}}^f_h,{\tilde{\underline{\varvec{z}}}})= & {} (\underline{\varvec{z}}^f-\underline{\varvec{z}}^f_h,\nabla \tilde{\varvec{q}}) = (\nabla \cdot (\underline{\varvec{z}}^f-\underline{\varvec{z}}^f_h),\tilde{\varvec{q}})\ \ \quad (\text {by }\tilde{\varvec{q}}|_{\partial \Omega }=0)\\= & {} (\nabla \cdot (\underline{\varvec{z}}^f-\underline{\varvec{z}}^f_h),\tilde{\varvec{q}}-\varvec{\Pi }^{Q}_h\tilde{\varvec{q}}) + (\nabla \cdot (\underline{\varvec{z}}^f-\underline{\varvec{z}}^f_h),\varvec{\Pi }^{Q}_h\tilde{\varvec{q}}) \\= & {} ({\varvec{w}}^f,\tilde{\varvec{q}}-\varvec{\Pi }^{Q}_h\tilde{\varvec{q}}) + ({\varvec{w}}^f-{\varvec{w}}^f_h,\varvec{\Pi }^{Q}_h\tilde{\varvec{q}}) \ \ \quad (\text {by error equation } (\mathrm{A.2b}) \text { and } (\mathrm{2.1c}))\\= & {} ({\varvec{w}}^f-\varvec{\Pi }^{RT}{\varvec{w}}^f,\tilde{\varvec{q}}-\varvec{\Pi }^{Q}_h\tilde{\varvec{q}}) + ({\varvec{w}}^f-\varvec{\Pi }^{RT}{\varvec{w}}^f, \varvec{\Pi }^{Q}_h\tilde{\varvec{q}}) + (\varvec{\Pi }^{RT}{\varvec{w}}^f-{\varvec{w}}^f_h,\varvec{\Pi }^Q_h\tilde{\varvec{q}}). \end{aligned}$$

Next, we express the second term and the third term

$$\begin{aligned} ({\varvec{w}}^f-\varvec{\Pi }^Q_h{\varvec{w}}^f,\varvec{\Pi }^{RT}\tilde{\varvec{q}})= & {} ({\varvec{w}}^f-\varvec{\Pi }^{RT}{\varvec{w}}^f, \varvec{\Pi }^Q_h\tilde{\varvec{q}}^f - \tilde{\varvec{q}}) +({\varvec{w}}^f-\varvec{\Pi }^{RT}{\varvec{w}}^f,\nabla {{\tilde{u}}}) \\= & {} ({\varvec{w}}^f-\varvec{\Pi }^{RT}{\varvec{w}}^f, \varvec{\Pi }^Q_h\tilde{\varvec{q}} - \tilde{\varvec{q}}) +(\nabla \cdot {\varvec{w}}^f-\nabla \cdot \varvec{\Pi }^{RT}{\varvec{w}}^f,{{\tilde{u}}}) \\= & {} ({\varvec{w}}^f-\varvec{\Pi }^{RT}{\varvec{w}}^f, \varvec{\Pi }^Q_h\tilde{\varvec{q}} - \tilde{\varvec{q}}) +(f-\Pi ^{V}_h\nabla \cdot {\varvec{w}}^f,{{\tilde{u}}}) \\= & {} ({\varvec{w}}^f-\varvec{\Pi }^{RT}{\varvec{w}}^f, \varvec{\Pi }^Q_h\tilde{\varvec{q}} - \tilde{\varvec{q}}) +(f-\Pi ^V_hf,{{\tilde{u}}}-\Pi ^V_h{{\tilde{u}}}). \end{aligned}$$

The last term vanishes. In fact, it follows from \({\varvec{w}}^f_h-\varvec{\Pi }^{RT}{\varvec{w}}^f\in \varvec{Q}_h\cap \varvec{W}_h\) and \(\nabla \cdot ({\underline{\varvec{\Pi }}}^{RT}{\varvec{w}}^f-{\varvec{w}}^f_h) = 0\) that

$$\begin{aligned} (\varvec{\Pi }^{RT}{\varvec{w}}^f-{\varvec{w}}^f_h, \varvec{\Pi }^{Q}_h\tilde{\varvec{q}})= & {} (\varvec{\Pi }^{RT}{\varvec{w}}^f-{\varvec{w}}^f_h,\tilde{\varvec{q}}^f) = (\varvec{\Pi }^{RT}{\varvec{w}}^f-{\varvec{w}}^f_h,\nabla {{\tilde{u}}}) \\= & {} (\nabla \cdot (\varvec{\Pi }^{RT}{\varvec{w}}^f-{\varvec{w}}^f_h),{{\tilde{u}}}) = 0 \end{aligned}$$

by the integration by parts, \({{\tilde{u}}}|_{\partial \Omega }=0\) and (A.2d). Combining the all above steps implies the desired result. \(\square \)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, Y., Xie, M. & Xiong, C. A New Family of Mixed Method for the Biharmonic Eigenvalue Problem Based on the First Order Equations of Hellan–Herrmann–Johnson Type. J Sci Comput 93, 66 (2022). https://doi.org/10.1007/s10915-022-02024-1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10915-022-02024-1

Keywords

Mathematics Subject Classification