Skip to main content
Log in

The Finite Element Method for the Elastic Transmission Eigenvalue Problem with Different Elastic Tensors

  • Published:
Journal of Scientific Computing Aims and scope Submit manuscript

Abstract

The elastic transmission eigenvalue problem, arising from the inverse scattering theory, plays a critical role in the qualitative reconstruction methods for elastic media. In this paper, we discuss the finite element method for solving the elastic transmission eigenvalue problem with different elastic tensors and different mass densities. The problem is neither self-adjoint nor elliptic at any frequency. By the \({\mathbb {T}}\)-coercivity we prove that the spectral of the problem is the spectral of a compact operator, and by the \({\mathbb {T}}\)-coercivity and Babuška–Osborn spectral approximation theory we derive a priori error estimate of the discrete eigenpairs. Numerical experiments show that the method is easy to implement and can efficiently compute elastic transmission eigenvalues.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Data Availability

Enquiries about data availability should be directed to the authors.

References

  1. Cakoni, F., Colton, D., Haddar, H.: Inverse Scattering Theory and Transmission Eigenvalues. SIAM, Philadelphia (2016)

    Book  MATH  Google Scholar 

  2. Colton, D., Kress, R.: Inverse Acoustic and Electromagnetic Scattering Theory, 4th edn. Springer, Cham (2019)

    Book  MATH  Google Scholar 

  3. Charalambopoulos, A., Kirsch, A., Anagnostopoulos, K.A., et al.: The factorization method in inverse elastic scattering from penetrable bodies. Inverse Probl. 23(1), 27 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  4. Bellis, C., Guzina, B.: On the existence and uniqueness of a solution to the interior transmission problem for piecewise-homogeneous solids. J. Elast. 101, 29–57 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  5. Bellis, C., Cakoni, F., Guzina, B.: Nature of the transmission eigenvalue spectrum for elastic bodies. IMA J. Appl. Math. 78, 895–923 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  6. Bao, G., Hu, G., Sun, J., Yin, T.: Direct and inverse elastic scattering from anisotropic media. J. Math. Pures Appl. 117, 263–301 (2018)

    Article  MathSciNet  MATH  Google Scholar 

  7. Colton, D., Monk, P., Sun, J.: Analytical and computational methods for transmission eigenvalues. Inverse Probl. 26, 045011 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  8. Sun, J., Zhou, A.: Finite Element Methods for Eigenvalue Problems. CRC Press, Taylor Francis Group, Boca Raton (2016)

    Book  Google Scholar 

  9. Camano, J., Rodriguez, R., Venegas, P.: Convergence of a lowest-order finite element method for the transmission eigenvalue problem. Calcolo 55(3), 33 (2018)

    Article  MathSciNet  MATH  Google Scholar 

  10. Kleefeld, A., Pieronek, L.: Computing interior transmission eigenvalues for homogeneous and anisotropic media. Inverse Probl. 34(10), 105007 (2018)

    Article  MathSciNet  MATH  Google Scholar 

  11. Yang, Y., Bi, H., Li, H., Han, J.: Mixed methods for the Helmholtz transmission eigenvalues. SIAM J. Sci. Comput. 38(3), A1383–A1403 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  12. Yang, Y., Zhang, Y., Bi, H.: A type of adaptive \(C^{0}\) non-conforming finite element method for the Helmholtz transmission eigenvalue problem. Comput. Methods Appl. Mech. Eng. 360, 112697 (2020)

    Article  MATH  Google Scholar 

  13. Xie, H., Wu, X.: A multilevel correction method for interior transmission eigenvalue Problem. J. Sci. Comput. 72, 586–604 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  14. Li, T., Huang, T., Lin, W., Wang, J.: On the transmission eigenvalue problem for the acoustic equation with a negative index of refraction and a practical numerical reconstruction method. Inverse Probl. Imaging 12(4), 1033–1054 (2018)

    Article  MathSciNet  MATH  Google Scholar 

  15. An, J., Shen, J.: Spectral approximation to a transmission eigenvalue problem and its applications to an inverse problem. Comput. Math. Appl. 69, 1132–1143 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  16. Cakoni, F., Kress, R.: A boundary integral equation method for the transmission eigenvalue problem. Appl. Anal. 96(1), 23–38 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  17. Chen, H., Guo, H., Zhang, Z., Zou, Q.: A \(C^{0}\) linear finite element method for two fourth-order eigenvalue problems. IMA J. Numer. Anal. 37(4), 2120–2138 (2017)

    MathSciNet  MATH  Google Scholar 

  18. Huang, R., Struthers, A., Sun, J., Zhang, R.: Recursive integral method for transmission eigenvalues. J. Comput. Phys. 327, 830–840 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  19. Mora, D., Velásquez, I.: A virtual element method for the transmission eigenvalue problem. Math. Models Methods Appl. Sci. 28(14), 2803–2831 (2018)

    Article  MathSciNet  MATH  Google Scholar 

  20. Zeng, F., Sun, J., Xu, L.: A spectral projection method for transmission eigenvalues. Sci. China Math. 59(8), 1613–1622 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  21. Xi, Y., Ji, X., Geng, H.: A C0IP method of transmission eigenvalues for elastic waves. J. Comput. Phys. 374, 237–248 (2018)

    Article  MathSciNet  MATH  Google Scholar 

  22. Ji, X., Sun, J., Li, P.: Computation of interior elastic transmission eigenvalues using a conforming finite element and the secant method. Results Appl. Math. 5, 100083 (2020)

    Article  MathSciNet  MATH  Google Scholar 

  23. Yang, Y., Han, J., Bi, H., Li, H., Zhang, Y.: Mixed methods for the elastic transmission eigenvalue problem. Appl. Math. Comput. 374, 125081 (2020)

    MathSciNet  MATH  Google Scholar 

  24. Yang, Y., Han, J., Bi, H.: \(H^{2}\)-conforming methods and two-grid discretizations for the elastic transmission eigenvalue problem. Commun. Comput. Phys. 28, 1366–1388 (2020)

    Article  MathSciNet  MATH  Google Scholar 

  25. Bi, H., Han, J., Yang, Y.: Local and parallel finite element schemes for the elastic transmission eigenvalue problem. East Asian J. Appl. Math. 11, 829–858 (2021)

    Article  MathSciNet  MATH  Google Scholar 

  26. Chang, W., Lin, W., Wang, J.: Efficient methods of computing interior transmission eigenvalues for the elastic waves. J. Comput. Phys. 407, 109227 (2020)

    Article  MathSciNet  MATH  Google Scholar 

  27. Bonnet-Ben Dhia, A.S., Ciarlet, P.J., Zwölf, C.M.: Time harmonic wave diffraction problems in materials with sign-shifting coefficients. J. Comput. Appl. Math. 234, 1912–1919 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  28. Bonnet-Ben Dhia, A.S., Chesnel, L., Haddar, H.: On the use of T-coercivity to study the interior transmission eigenvalue problem. C. R. Acad. Sci. Paris Ser. I(349), 647–651 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  29. Bonnet-Ben Dhia, A.S., Chesnel, L., Ciarlet, P.J.: T-coercivity for scalar interface problems between dielectrics and metamaterials. ESAIM: M2AN 46, 1363–1387 (2012)

  30. Chesnel, L., Ciarlet, P.J.: T-coercivity and continuous Galerkin methods: application to transmission problems with sign changing coefficients. Numer. Math. 124, 1–29 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  31. Ciarlet, P.J.: T-coercivity: application to the discretization of Helmholtz-like problems. Comput. Math. Appl. 64, 22–34 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  32. Wu, X., Chen, W.: Error estimates of the finite element method for interior transmission problems. J. Sci. Comput. 57(2), 331–348 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  33. Babuska, I., Osborn, J.E.: Eigenvalue problems. In: Ciarlet, P.G., Lions, J.L. (eds.) Finite Element Methods (Part 1), Handbook of Numerical Analysis, vol. 2, pp. 640–787. Elsevier Science Publishers, North-Holand (1991)

    Google Scholar 

  34. Boffi, D.: Finite element approximation of eigenvalue problems. Acta Numer. 19, 1–120 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  35. Brenner, S.C., Scott, L.R.: The Mathematical Theory of Finite Element Methods, 2nd edn. Springer, New York (2002)

    Book  MATH  Google Scholar 

  36. Ciarlet, P.G.: Basic error estimates for elliptic problems. In: Ciarlet, P.G., Lions, J.L. (eds.) Finite Element Methods (Part1), Handbook of Numerical Analysis, vol. 2, pp. 21–343. Elsevier Science Publishers, North-Holand (1991)

    Google Scholar 

  37. Ern, A., Guermond, J.-L.: Finite Elements II, Galerkin Approximation, Elliptic and Mixed PDEs. Springer, Cham (2021)

    Book  MATH  Google Scholar 

  38. Oden, J.T., Reddy, J.N.: An Introduction to the Mathematical Theory of Finite Elements. Courier Dover Publications, New York (2012)

    MATH  Google Scholar 

  39. Girault, V., Raviart, P.A.: Finite Element Approximation of the Navier–Stokes Equations. Lecture Notes in Mathematics, vol. 749. Berlin, New York (1981)

  40. Wang, L., Xu, X.: Foundation of Mathematics in Finite Element Methods. Science Press, Beijing (2004) (in Chinese)

  41. Shen, J., Tang, T., Wang, L.-L.: Spectral Methods: Algorithms, Analysis and Applications. Springer Ser. Comput. Math, Springer, Heidelberg (2011)

    Book  MATH  Google Scholar 

  42. Dunford, N., Schwartz, J.T.: Linear Operators. Spectral Theory, Selfadjoint Operators in Hilbert Space, vol. 2. Interscience, New York (1963)

  43. Chen, L.: An integrated finite element method package in MATLAB. Technical Report, University of California at Irvine, California (2009)

  44. Gustafsson, T., McBain, G.D.: scikit-fem: a Python package for finite element assembly. J. Open Source Softw. 5(52), 2369 (2020)

    Article  Google Scholar 

  45. Babu\(\breve{s}\)ka, I., Suri, M.: Locking effects in the finite element approximation of elasticity problems. Numer. Math. 62, 439–463 (1992)

  46. Botti, M., Di Pietro, D.A., Guglielmana, A.: A low-order nonconforming method for liner elasticity on general meshes. Comput. Methods Appl. Mech. Eng. 354, 96–118 (2019)

    Article  MATH  Google Scholar 

Download references

Acknowledgements

The authors cordially thank the editor and the referees for their valuable comments and suggestions which lead to the improvement of this paper.

Funding

Projects supported by the National Natural Science Foundation of China (Grant Nos. 12261024, 11561014).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yidu Yang.

Ethics declarations

Conflict of interest

The authors have not disclosed any competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Projects supported by the National Natural Science Foundation of China (Grant Nos. 12261024, 11561014).

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yang, Y., Wang, S. & Bi, H. The Finite Element Method for the Elastic Transmission Eigenvalue Problem with Different Elastic Tensors. J Sci Comput 93, 65 (2022). https://doi.org/10.1007/s10915-022-02030-3

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10915-022-02030-3

Keywords

Mathematics Subject Classification

Navigation