Abstract
By defining spaces and differential operators on mesh surfaces, we extend the total generalized variation (\(\textrm{TGV}\)) model on the 2-dimensional space to triangulated surfaces. Based on the new definition of \(\textrm{TGV}\) model on triangulated surfaces, we introduce total generalized variation restoration optimization problem for data (image pixel/surface normal) restoration over triangulated surfaces. The optimization problem is solved effectively by augmented Lagrangian method (\(\textrm{ALM}\)). Closed form solutions for subproblems of the \(\textrm{ALM}\) method are obtained. Convergence analysis of the \(\textrm{ALM}\) algorithm is presented. Through series of numerical experiments, we show that the \(\textrm{TGV}\) method can alleviate the staircase effect and recover more structures and details. As a result, the \(\textrm{TGV}\) model outperforms several existing models visually and quantitatively. The robustness of the \(\textrm{TGV}\) method is also confirmed numerically.















Similar content being viewed by others
Data availibility
Enquiries about data availability should be directed to the authors.
References
Avron, H., Sharf, A., Greif, C., Cohen-Or, D.: \(l_1\)-sparse reconstruction of sharp point set surfaces. ACM Trans. Graph. 29(5), 1–12 (2010)
Belyaev, A., Ohtake, Y.: A comparison of mesh smoothing methods. In: Israel-Korea Bi-national conference on geometric modeling and computer graphics, vol. 2 (2003)
Bredies, K., Holler, M., Storath, M., Weinmann, A.: Total generalized variation for manifold-valued data. SIAM J. Imag. Sci. 11(3), 1785–1848 (2018)
Bredies, K., Kunisch, K., Pock, T.: Total generalized variation. SIAM J. Imag. Sci. 3(3), 492–526 (2010)
Bredies, K., Sun, H.: A proximal point analysis of the preconditioned alternating direction method of multipliers. J. Optim. Theory Appl. 173(3), 878–907 (2017)
Bredies, K., Valkonen, T.: Inverse problems with second-order total generalized variation constraints. Preprint arXiv:2005.09725 (2020)
Brito-Loeza, C., Chen, K.: On high-order denoising models and fast algorithms for vector-valued images. IEEE Trans. Image Process. 19(6), 1518–1527 (2010)
Caselles, V., Chambolle, A., Novaga, M.: The discontinuity set of solutions of the \({\rm TV}\) denoising problem and some extensions. Multiscale Model. Simul. 6(3), 879–894 (2007)
Chambolle, A., Caselles, V., Cremers, D., Novaga, M., Pock, T.: An introduction to total variation for image analysis. In: Theoretical Foundations and Numerical Methods for Sparse Recovery, pp. 263–340. de Gruyter (2010)
Chambolle, A., Lions, P.L.: Image recovery via total variation minimization and related problems. Numer. Math. 76(2), 167–188 (1997)
Chan, T., Marquina, A., Mulet, P.: High-order total variation-based image restoration. SIAM J. Sci. Comput. 22(2), 503–516 (2000)
Chan, T.F., Esedoglu, S., Park, F.: A fourth order dual method for staircase reduction in texture extraction and image restoration problems. In: IEEE International Conference on Image Processing, pp. 4137–4140 (2010)
Chan, T.F., Golub, G.H., Mulet, P.: A nonlinear primal-dual method for total variation-based image restoration. SIAM J. Sci. Comput. 20(6), 1964–1977 (1999)
Chan, T.F., Wong, C.K.: Total variation blind deconvolution. IEEE Trans. Image Process. 7(3), 370–375 (1998)
Condat, L.: Discrete total variation: New definition and minimization. SIAM J. Imag. Sci. 10(3), 1258–1290 (2017)
De Goes, F., Butts, A., Desbrun, M.: Discrete differential operators on polygonal meshes. ACM Trans. Graph. 39(4), 110:1-110:14 (2020)
Deng, W., Yin, W.: On the global and linear convergence of the generalized alternating direction method of multipliers. J. Sci. Comput. 66(3), 889–916 (2016)
Desbrun, M., Meyer, M., Schröder, P., Barr, A.H.: Discrete differential-geometry operators in nD (2000)
Ekeland, I., Temam, R.: Convex Analysis and Variational Problems. SIAM (1999)
Glowinski, R., Le Tallec, P.: Augmented Lagrangian and Operator-Splitting Methods in Nonlinear Mechanics. SIAM (1989)
He, L., Schaefer, S.: Mesh denoising via \({\rm L}_0\) minimization. ACM Trans. Graph. 32(4), 1–8 (2013)
Herrmann, M., Herzog, R., Kröner, H., Schmidt, S., Vidal, J.: Analysis and an interior-point approach for \({\rm TV}\) image reconstruction problems on smooth surfaces. SIAM J. Imag. Sci. 11(2), 889–922 (2018)
Huska, M., Lanza, A., Morigi, S., Sgallari, F.: Convex non-convex segmentation of scalar fields over arbitrary triangulated surfaces. J. Comput. Appl. Math. 349, 438–451 (2019)
Kang, M., Kang, M., Jung, M.: Total generalized variation based denoising models for ultrasound images. J. Sci. Comput. 72(1), 172–197 (2017)
Kimmel, R.: Intrinsic scale space for images on surfaces: \({\rm T}\)he geodesic curvature flow. In: International Conference on Scale-Space Theories in Computer Vision, pp. 212–223. Springer (1997)
Knoll, F., Bredies, K., Pock, T., Stollberger, R.: Second order total generalized variation \(({\rm TGV})\) for \({\rm MRI}\). Magn. Reson. Med. 65(2), 480–491 (2011)
Li, X., Li, R., Zhu, L., Fu, C.W., Heng, P.A.: \({\rm DNF}\)-\({\rm N}\)et: A deep normal filtering network for mesh denoising. IEEE Transactions on Visualization and Computer Graphics preprint (2020)
Liu, L., Zhang, L., Xu, Y., Gotsman, C., Gortler, S.J.: A local/global approach to mesh parameterization. Comput. Graph. Forum 27(5), 1495–1504 (2008)
Ma, J., Chen, C., Li, C., Huang, J.: Infrared and visible image fusion via gradient transfer and total variation minimization. Inf. Fusion 31, 100–109 (2016)
Meyer, M., Desbrun, M., Schröder, P., Barr, A.H.: Discrete differential-geometry operators for triangulated 2-manifolds. In: Visualization and mathematics III, pp. 35–57. Springer (2003)
Nikolova, M.: Local strong homogeneity of a regularized estimator. SIAM J. Appl. Math. 61(2), 633–658 (2000)
Ring, W.: Structural properties of solutions to total variation regularization problems. ESAIM: Math. Model. Numer. Anal. 34(4), 799–810 (2000)
Romano, Y., Elad, M.: Boosting of image denoising algorithms. SIAM J. Imag. Sci. 8(2), 1187–1219 (2015)
Rudin, L.I., Osher, S., Fatemi, E.: Nonlinear total variation based noise removal algorithms. Physica D 60(1–4), 259–268 (1992)
Sander, P.V., Snyder, J., Gortler, S.J., Hoppe, H.: Texture mapping progressive meshes. In: Proceedings of the 28th Annual Conference on Computer Graphics and Interactive Techniques, pp. 409–416 (2001)
Scherzer, O., Grasmair, M., Grossauer, H., Haltmeier, M., Lenzen, F.: Variational Methods in Imaging. Springer (2009)
Tasdizen, T., Whitaker, R., Burchard, P., Osher, S.: Geometric surface smoothing via anisotropic diffusion of normals. In: IEEE Visualization, pp. 125–132. IEEE (2002)
Valkonen, T., Bredies, K., Knoll, F.: Total generalized variation in diffusion tensor imaging. SIAM J. Imag. Sci. 6(1), 487–525 (2013)
Wali, S., Zhang, H., Chang, H., Wu, C.: A new adaptive boosting total generalized variation \(({\rm TGV})\) technique for image denoising and inpainting. J. Vis. Commun. Image Represent. 59, 39–51 (2019)
Wang, P.S., Liu, Y., Tong, X.: Mesh denoising via cascaded normal regression. ACM Trans. Graph. (SIGGRAPH Asia) 35(6), 232:1-232:12 (2016)
Wang, Y., Yang, J., Yin, W., Zhang, Y.: A new alternating minimization algorithm for total variation image reconstruction. SIAM J. Imag. Sci. 1(3), 248–272 (2008)
Wu, C., Deng, J., Chen, F., Tai, X.: Scale-space analysis of discrete filtering over arbitrary triangulated surfaces. SIAM J. Imag. Sci. 2(2), 670–709 (2009)
Wu, C., Deng, J., Zhu, W., Chen, F.: Inpainting images on implicit surfaces. In: Proc. Pacific Graphics Conf, pp. 142–144 (2005)
Wu, C., Tai, X.C.: Augmented lagrangian method, dual methods, and split bregman iteration for \({\rm ROF}\), vectorial \({\rm TV}\), and high order models. SIAM J. Imag. Sci. 3(3), 300–339 (2010)
Wu, C., Zhang, J., Duan, Y., Tai, X.C.: Augmented lagrangian method for total variation based image restoration and segmentation over triangulated surfaces. J. Sci. Comput. 50(1), 145–166 (2012)
Wu, C., Zhang, J., Tai, X.C.: Augmented lagrangian method for total variation restoration with non-quadratic fidelity. Inverse Probl. Imaging 5(1), 237–261 (2011)
Xu, L., Yan, Q., Xia, Y., Jia, J.: Structure extraction from texture via relative total variation. ACM Trans. Graph. 31(6), 1–10 (2012)
Yadav, S.K., Reitebuch, U., Polthier, K.: Robust and high fidelity mesh denoising. IEEE Trans. Visual Comput. Graphics 25(6), 2304–2310 (2019)
Zhang, H., Wu, C., Zhang, J., Deng, J.: Variational mesh denoising using total variation and piecewise constant function space. IEEE Trans. Visual Comput. Graphics 21(7), 873–886 (2015)
Zhang, J., Zheng, J., Wu, C., Cai, J.: Variational mesh decomposition. ACM Trans. Graph. 31(3), 1–14 (2012)
Zorin, D., Schröder, P., Sweldens, W.: Interpolating subdivision for meshes with arbitrary topology. In: Proceedings of the 23rd Annual Conference on Computer Graphics and Interactive Techniques, pp. 189–192 (1996)
Acknowledgements
We would like to thank Chunlin Wu for providing their data of [45], the authors of \(\textrm{CNR}\) [40] and \(\textrm{DNF}\) [27] for providing their results, the authors of \(\textrm{RoFi}\) [48] for sharing their codes, and also thank Zhifang Liu for discussing about the properties of TGV. This work was supported by the NSF of China (Nos. 61802279, 61602341) and NSF of Tianjin (Nos. 18JCQNJC00100, 17JCQNJC00600).
Author information
Authors and Affiliations
Corresponding author
Ethics declarations
Competing interests
The authors have not disclosed any competing interests.
Additional information
Publisher's Note
Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
Supplementary Information
Below is the link to the electronic supplementary material.
Rights and permissions
Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.
About this article
Cite this article
Zhang, H., Peng, Z. Total Generalized Variation for Triangulated Surface Data. J Sci Comput 93, 87 (2022). https://doi.org/10.1007/s10915-022-02047-8
Received:
Revised:
Accepted:
Published:
DOI: https://doi.org/10.1007/s10915-022-02047-8