Skip to main content
Log in

Locking-Free and Locally-Conservative Enriched Galerkin Method for Poroelasticity

  • Published:
Journal of Scientific Computing Aims and scope Submit manuscript

Abstract

This paper develops a new coupled enriched Galerkin (EG) scheme for Biot’s poroelasticity model based on the displacement-pressure formulation. The aim of this work is to provide a stable and robust numerical method for a wide range of physical and numerical parameters. The finite-dimensional solution spaces are enriched linear Lagrange spaces, and the inf-sup condition between the two spaces is achieved by adding a stabilization term. The resulting coupled EG method is locally conservative and provides stable solutions without spurious oscillations or overshoots/undershoots. The well-posedness and optimal a priori error estimates are established. Numerical results in various scenarios are provided.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Data availability

The datasets generated during and/or analyzed during the current study are available from the corresponding author on reasonable request.

References

  1. Adams, R.A., Fournier, J.J.: Sobolev spaces, vol. 140. Elsevier (2003)

  2. Ambartsumyan, I., Khattatov, E., Yotov, I.: A coupled multipoint stress-multipoint flux mixed finite element method for the Biot system of poroelasticity. Comput. Methods Appl. Mech. Engrg. 372, 113407 (2020)

    Article  MathSciNet  MATH  Google Scholar 

  3. Bærland, T., Lee, J.J., Mardal, K.A., Winther, R.: Weakly imposed symmetry and robust preconditioners for Biot’s consolidation model. Comput. Methods Appl. Math. 17(3), 377–396 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  4. Bean, M.L., Yi, S.Y.: An immersed interface method for a 1D poroelasticity problem with discontinuous coefficients. J. Comput. Appl. Math. 272, 81–96 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  5. Biot, M.: General theory of three-dimensional consolidation. J. Appl. Phys. 12(2), 155–164 (1941)

    Article  MATH  Google Scholar 

  6. Biot, M., Willis, D.: The elastic coefficients of the theory of consolidation. J. Appl. Mech 15, 594–601 (1957)

    Article  MathSciNet  Google Scholar 

  7. Boffi, D., Brezzi, F., Fortin, M.: Mixed finite element methods and applications, vol. 44. Springer (2013)

  8. Booker, J.R., Small, J.: An investigation of the stability of numerical solutions of Biot’s equations of consolidation. Int. J. Solids. Struct. 11(7–8), 907–917 (1975)

    Article  MATH  Google Scholar 

  9. Brezzi, F., Fortin, M.: Mixed and hybrid finite element methods, Springer Series in Computational Mathematics, vol. 15. Springer-Verlag, New York (1991)

  10. Brezzi, F., Pitkäranta, J.: On the stabilization of finite element approximations of the Stokes equations. In: Efficient solutions of elliptic systems, pp. 11–19. Springer (1984)

  11. Choo, J.: Stabilized mixed continuous/enriched Galerkin formulations for locally mass conservative poromechanics. Comput. Methods Appl. Mech. Engrg. 357, 112568 (2019)

    Article  MathSciNet  MATH  Google Scholar 

  12. Choo, J., Lee, S.: Enriched Galerkin finite elements for coupled poromechanics with local mass conservation. Comput. Methods Appl. Mech. Engrg. 341, 311–332 (2018)

    Article  MathSciNet  MATH  Google Scholar 

  13. Gopalakrishnan, J., Qiu, W.: Partial expansion of a Lipschitz domain and some applications. Front. Math. China 7(2), 249–272 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  14. Haga, J., Osnes, H., Langtangen, H.: On the causes of pressure oscillations in low permeable and low compressible porous media. Int. J. Numer. Anal. Methods. Geomech. 36(12), 1507–1522 (2012)

    Article  Google Scholar 

  15. Honorio, H., Maliska, C., Ferronato, M., Janna, C.: A stabilized element-based finite volume method for poroelastic problems. J. Comput. Phys. 364, 49–72 (2018)

    Article  MathSciNet  MATH  Google Scholar 

  16. Hu, X., Adler, J., Zikatanov, L.: HAZmath: A Simple Finite Element, Graph, and Solver Library (2020). https://hazmathteam.github.io/hazmath/

  17. Kadeethum, T., Lee, S., Ballarin, F., Choo, J., Nick, H.M.: A locally conservative mixed finite element framework for coupled hydro-mechanical-chemical processes in heterogeneous porous media. Comput. Geosci. 152, 104774 (2021)

    Article  Google Scholar 

  18. Kadeethum, T., Lee, S., Nick, H.: Finite element solvers for Biot’s poroelasticity equations in porous media. Math. Geosci. 52(8), 977–1015 (2020)

    Article  MathSciNet  MATH  Google Scholar 

  19. Kadeethum, T., Nick, H.M., Lee, S., Ballarin, F.: Enriched Galerkin discretization for modeling poroelasticity and permeability alteration in heterogeneous porous media. J. Comput. Phys. 427, 110030 (2021)

    Article  MathSciNet  MATH  Google Scholar 

  20. Lee, S., Lee, Y.J., Wheeler, M.F.: A locally conservative enriched Galerkin approximation and efficient solver for elliptic and parabolic problems. SIAM J. Sci. Comput. 38(3), A1404–A1429 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  21. Lee, S., Mikelić, A., Wheeler, M.F., Wick, T.: Phase-field modeling of proppant-filled fractures in a poroelastic medium. Comput. Methods Appl. Mech. Engrg. 312, 509–541 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  22. Lee, S., Wheeler, M.F.: Adaptive enriched Galerkin methods for miscible displacement problems with entropy residual stabilization. J. Comput. Phys. 331, 19–37 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  23. Lee, S., Wheeler, M.F.: Enriched Galerkin methods for two-phase flow in porous media with capillary pressure. J. Comput. Phys. 367, 65–86 (2018)

    Article  MathSciNet  MATH  Google Scholar 

  24. Liu, R.: Discontinuous Galerkin finite element solution for poromechanics. The University of Texas at Austin (2004)

  25. Liu, R., Wheeler, M., Dawson, C., Dean, R.: On a coupled discontinuous/continuous Galerkin framework and an adaptive penalty scheme for poroelasticity problems. Comput. Methods Appl. Mech. Engrg. 198(41–44), 3499–3510 (2009)

    Article  MATH  Google Scholar 

  26. Masson, Y.J., Pride, S., Nihei, K.: Finite difference modeling of Biot’s poroelastic equations at seismic frequencies. J. Geophys. Res. Solid Earth 111, B10305 (2006). https://doi.org/10.1029/2006JB004366

  27. Mercer, G., Barry, S.: Flow and deformation in poroelasticity-II numerical method. Math. Comput. Model. 30(9–10), 31–38 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  28. Murad, M., Loula, A.: On stability and convergence of finite element approximations of Biot’s consolidation problem. Int. J. Numer. Methods Eng. 37(4), 645–667 (1994)

    Article  MathSciNet  MATH  Google Scholar 

  29. Murad, M.A., Thomée, V., Loula, A.F.: Asymptotic behavior of semidiscrete finite-element approximations of Biot’s consolidation problem. SIAM J. Numer. Anal. 33(3), 1065–1083 (1996)

    Article  MathSciNet  MATH  Google Scholar 

  30. Nitsche, J.A.: On Korn’s second inequality. RAIRO Anal. Numér. 15(3), 237–248 (1981)

    Article  MathSciNet  MATH  Google Scholar 

  31. Nordbotten, J.: Cell-centered finite volume discretizations for deformable porous media. Int. J. Numer. Methods Eng. 100(6), 399–418 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  32. Phillips, P., Wheeler, M.: A coupling of mixed and continuous Galerkin finite element methods for poroelasticity. I. The continuous in time case. Comput. Geosci. 11(2), 131–144 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  33. Phillips, P., Wheeler, M.: A coupling of mixed and continuous Galerkin finite element methods for poroelasticity II: the discrete-in-time case. Comput. Geosci. 11(2), 145–158 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  34. Phillips, P., Wheeler, M.: A coupling of mixed and discontinuous Galerkin finite-element methods for poroelasticity. Comput. Geosci. 12(4), 417–435 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  35. Reed, M.: An investigation of numerical errors in the analysis of consolidation by finite elements. Int. J. Numer. Anal. Methods. Geomech. 8(3), 243–257 (1984)

    Article  MathSciNet  MATH  Google Scholar 

  36. Rodrigo, C., Gaspar, F., Hu, X., Zikatanov, L.: Stability and monotonicity for some discretizations of the Biot’s consolidation model. Comput. Methods Appl. Mech. Engrg. 298, 183–204 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  37. Showalter, R.E.: Diffusion in poro-elastic media. J. Math. Anal. Appl. 251(1), 310–340 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  38. Sokolova, I., Bastisya, M., Hajibeygi, H.: Multiscale finite volume method for finite-volume-based simulation of poroelasticity. J. Comput. Phys. 379, 309–324 (2019)

    Article  MathSciNet  MATH  Google Scholar 

  39. Sun, S., Liu, J.: A locally conservative finite element method based on piecewise constant enrichment of the continuous Galerkin method. SIAM J. Sci. Comput. 31(4), 2528–2548 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  40. Truty, A., Zimmermann, T.: Stabilized mixed finite element formulations for materially nonlinear partially saturated two-phase media. Comput. Methods Appl. Mech. Engrg. 195(13–16), 1517–1546 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  41. Vermeer, P., Verruijt, A.: An accuracy condition for consolidation by finite elements. Int. J. Numer. Anal. Methods. Geomech. 5(1), 1–14 (1981)

    Article  MathSciNet  MATH  Google Scholar 

  42. Wan, J.: Stabilized finite element methods for coupled geomechanics and multiphase flow. Stanford university (2003)

  43. Wheeler, M., Xue, G., Yotov, I.: Coupling multipoint flux mixed finite element methods with continuous Galerkin methods for poroelasticity. Comput. Geosci. 18(1), 57–75 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  44. Yi, S.Y.: A coupling of nonconforming and mixed finite element methods for Biot’s consolidation model. Numer. Methods Partial Differ. Equ. 29(5), 1749–1777 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  45. Yi, S.Y.: Convergence analysis of a new mixed finite element method for Biot’s consolidation model. Numer. Methods Partial Differ. Equ. 30(4), 1189–1210 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  46. Yi, S.Y.: A study of two modes of locking in poroelasticity. SIAM J. Numer. Anal. 55(4), 1915–1936 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  47. Yi, S.Y., Hu, X., Lee, S., Adler, J.H.: An enriched Galerkin method for the Stokes equations. Comput. Math. Appl. 120, 115–131 (2022)

    Article  MathSciNet  MATH  Google Scholar 

  48. Yi, S.Y., Lee, S., Zikatanov, L.: Locking-free enriched Galerkin method for linear elasticity. SIAM J. Numer. Anal. 60(1), 52–75 (2022)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Funding

The work of S. Lee was partially supported by the U.S. National Science Foundation Grant DMS-1913016 and DMS-2208402. The work of S.-Y. Yi was supported by the U.S. National Science Foundation under Grant DMS-2208426.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Son-Young Yi.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lee, S., Yi, SY. Locking-Free and Locally-Conservative Enriched Galerkin Method for Poroelasticity. J Sci Comput 94, 26 (2023). https://doi.org/10.1007/s10915-022-02079-0

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10915-022-02079-0

Keywords

Mathematics Subject Classification

Navigation