Skip to main content
Log in

A Nonnested Augmented Subspace Method for Elliptic Eigenvalue Problems with Curved Interfaces

  • Published:
Journal of Scientific Computing Aims and scope Submit manuscript

Abstract

In this paper, we present a nonnested augmented subspace algorithm and its multilevel correction method for solving elliptic eigenvalue problems with curved interfaces. The augmented subspace algorithm and the corresponding multilevel correction method are designed based on a coarse finite element space which is not the subset of the finer finite element space. The nonnested augmented subspace method can transform the eigenvalue problem-solving on the finest mesh to the solving linear equation on the same mesh and small scale eigenvalue problem on the low dimensional augmented subspace. The corresponding theoretical analysis and numerical experiments are provided to demonstrate the efficiency of the proposed algorithms.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. Adams, R., A.: Sobolev Spaces,: A subsidiary of Harcourt Brace Jovanovich Publishers. Academic Press, New York-London (1975)

  2. Babuška, I.: The finite element method for elliptic equations with discontinuous coefficients. Computing 5, 207–213 (1970)

    Article  MATH  Google Scholar 

  3. Babuška, I., Osborn, J.E.: Finite element-galerkin approximation of the eigenvalues and eigenvectors of selfadjoint problems. Math. Comp. 52(186), 275–297 (1989)

    Article  MATH  Google Scholar 

  4. Balay, S., Abhyankar, S., Adams, M. F., Brown, J., Brune, P., Buschelman, K., Dalcin, L., Dener, A., Eijkhout, V., Gropp, W. D., Karpeyev, D., Kaushik, D., Knepley, M. G., May, D. A., McInnes, L. C., Mills, R. T., Munson, T., Rupp, K., Sanan, P., Smith, B. F., Zampini, S., Zhang, H., Zhang, H.: PETSc Web page. https://www.mcs.anl.gov/petsc, (2019)

  5. Balay, S., Abhyankar, S., Adams, M. F., Brown, J., Brune, P., Buschelman, K., Dalcin, L., Dener, A., Eijkhout, V., Gropp, W. D., Karpeyev, D., Kaushik, D., Knepley, M. G., May, D. A., McInnes, L. C., Mills, R. T., Munson, T., Rupp, K., Sanan, P., Smith, B. F., Zampini, S., Zhang, H., Zhang, H.: PETSc users manual, Tech. Report ANL-95/11 - Revision 3.14, Argonne National Laboratory, (2020)

  6. Balay, S., Gropp, W.D., McInnes, L.C., Smith, B.F.: Efficient management of parallelism in object oriented numerical software libraries. In: Arge, E., Bruaset, A.M., Langtangen, H.P. (eds.) Modern Software Tools in Scientific Computing. Birkhäuser Press, Switzerland (1997)

    Google Scholar 

  7. Bank, R.E., Dupont, T.: An optimal order process for solving finite element equations. Math. Comp. 36(153), 35–51 (1981)

    Article  MATH  Google Scholar 

  8. Bramble, J. H.: Multigrid Methods, vol. 294 of Pitman Research Notes in Mathematics Series, Longman Scientific & Technical, Harlow; copublished in the United States with John Wiley & Sons, Inc., New York, (1993)

  9. Bramble, J.H., Zhang, X.: The analysis of multigrid methods. Handb Numer. Anal. 7, 173–415 (2000)

    MATH  Google Scholar 

  10. Brandt, A., McCormick, S., Ruge, J.: Multigrid methods for differential eigenproblems. SIAM J. Sci. Statist. Comput. 4(2), 244–260 (1983)

    Article  MATH  Google Scholar 

  11. Brenner, S.C., Scott, L.R.: The mathematical theory of finite element methods. Texts in Applied Mathematics, vol. 15. Springer-Verlag, New York (1994)

  12. Chatelin, F.: Spectral Approximation of Linear Operators, Computer Science and Applied Mathematics, Academic Press, New York, (1983)

  13. Chen, Z., Zou, J.: Finite element methods and their convergence for elliptic and parabolic interface problems. Numer. Math. 79(2), 175–202 (1998)

    Article  MATH  Google Scholar 

  14. Ciarlet, P.G.: The Finite Element Method for Elliptic Problems, vol. 4. North-Holland Publishing Co., Amsterdam-New York-Oxford (1978)

    Book  MATH  Google Scholar 

  15. Di, Y., Li, R., Tang, T., Zhang, P.: Moving mesh finite element methods for the incompressible Navier-Stokes equations. SIAM J. Sci. Comput. 26(3), 1036–1056 (2005)

    Article  MATH  Google Scholar 

  16. Falgout, R.D., Yang, U.M.: Hypre: a library of high performance preconditioners. In: Sloot, P.M.A., Hoekstra, A.G., Tan, C.J.K., Dongarra, J.J. (eds.) Computational Science – ICCS 2002. Heidelberg, Springer, Berlin (2002)

    Google Scholar 

  17. Hackbusch, W.: On the computation of approximate eigenvalues and eigenfunctions of elliptic operators by means of a multi-grid method. SIAM J. Numer. Anal. 16(2), 201–215 (1979)

    Article  MATH  Google Scholar 

  18. Hackbusch, W.: Multigrid methods and applications. Springer Series in Computational Mathematics, vol. 4. Springer-Verlag, Berlin (1985)

  19. Hecht, F.: New development in freefem++. J. Numer. Math. 20, 251–266 (2012)

    Article  MATH  Google Scholar 

  20. Hu, X., Cheng, X.: Acceleration of a two-grid method for eigenvalue problems. Math. Comp. 80(275), 1287–1301 (2011)

    Article  MATH  Google Scholar 

  21. Jolivet, P., Hecht, F., Nataf, F., Prud’homme, C.: Scalable domain decomposition preconditioners for heterogeneous elliptic problems, in SC ’13: Proceedings of the International Conference on High Performance Computing, Networking, Storage and Analysis, (2013), pp. 1–11

  22. Li, J., Melenk, J.M., Wohlmuth, B., Zou, J.: Optimal a priori estimates for higher order finite elements for elliptic interface problems. Appl. Numer. Math. 60, 19–37 (2010)

    Article  MATH  Google Scholar 

  23. Li, R., Tang, T., Zhang, P.: Moving mesh methods in multiple dimensions based on harmonic maps. J. Comput. Phys. 170(2), 562–588 (2001)

    Article  MATH  Google Scholar 

  24. Li, R., Tang, T., Zhang, P.: A moving mesh finite element algorithm for singular problems in two and three space dimensions. J. Comput. Phys. 177(2), 365–393 (2002)

    Article  MATH  Google Scholar 

  25. Lin, Q., Xie, H.: An observation on the Aubin-Nitsche lemma and its applications. Math. Pract. Theory 41(17), 247–258 (2011)

    MATH  Google Scholar 

  26. Lin, Q., Xie, H.: A multi-level correction scheme for eigenvalue problems. Math. Comp. 84(291), 71–88 (2015)

    Article  MATH  Google Scholar 

  27. Lin, Q., Xie, H., Xu, J.: Lower bounds of the discretization error for piecewise polynomials. Math. Comp. 83(285), 1–13 (2014)

    Article  MATH  Google Scholar 

  28. Miller, K.: Moving finite elements II. SIAM J. Numer. Anal. 18(6), 1033–1057 (1981)

    Article  MATH  Google Scholar 

  29. Miller, K., Miller, R.N.: Moving finite elements I. SIAM J. Numer. Anal. 18(6), 1019–1032 (1981)

    Article  MATH  Google Scholar 

  30. Roman, J. E., Campos, C., Romero, E., Tomǎs, A.: Slepc users manual–scalable library for eigenvalue problem computations, Tech. Report 3.14, Universitat Polit‘ecnica de Valencia, Spain

  31. Saad, Y.: Numerical methods for large eigenvalue problems, vol. 66 of Classics in Applied Mathematics, Society for Industrial and Applied Mathematics (SIAM), Philadelphia, PA, (2011)

  32. Scott, L.R., Zhang, S.: Higher-dimensional nonnested multigrid methods. Math. Comp. 58(198), 457–466 (1992)

    Article  MATH  Google Scholar 

  33. Shaidurov, V.V.: Multigrid Methods for Finite Elements Mathematics and its Applications. Kluwer Academic Publishers Group, Dordrecht (1995)

    Book  MATH  Google Scholar 

  34. Toselli, A., Widlund, O.: Domain Decomposition Methods-Algorithms and Theory Springer Series in Computational Mathematics. Springer-Verlag, Berlin (2005)

    Book  MATH  Google Scholar 

  35. Xie, H.: A multigrid method for eigenvalue problem. J. Comput. Phys. 274, 550–561 (2014)

    Article  MATH  Google Scholar 

  36. Xie, H.: A type of multi-level correction scheme for eigenvalue problems by nonconforming finite element methods. BIT 55(4), 1243–1266 (2015)

    Article  MATH  Google Scholar 

  37. Xie, H.: An augmented subspace method and its applications. J. Numer. Methods Comput. Appl. 41(3), 169–191 (2020)

    MATH  Google Scholar 

  38. Xie, H., Zhang, L., Owhadi, H.: Fast eigenpairs computation with operator adapted wavelets and hierarchical subspace correction. SIAM J. Numer. Anal. 57(6), 2519–2550 (2019)

    Article  MATH  Google Scholar 

  39. Xu, F., Xie, H., Zhang, N.: A parallel augmented subspace method for eigenvalue problems. SIAM J. Sci. Comput. 42(5), A2655–A2677 (2020)

    Article  MATH  Google Scholar 

  40. Xu, J.: Iterative methods by space decomposition and subspace correction. SIAM Rev. 34(4), 581–613 (1992)

    Article  MATH  Google Scholar 

  41. Xu, J., Zhou, A.: A two-grid discretization scheme for eigenvalue problems. Math. Comput. 70(233), 17–25 (2001)

    Article  MATH  Google Scholar 

  42. Xu, X.: Parallel algebraic multigrid methods: state-of-the art and challenges for extreme-scale applications. J. Numer. Method. Comput. Appl. 40(4), 243–260 (2019)

    MATH  Google Scholar 

  43. Yang, Y., Bi, H.: Two-grid finite element discretization schemes based on shifted-inverse power method for elliptic eigenvalue problems. SIAM J. Numer. Anal. 49(4), 1602–1624 (2011)

    Article  MATH  Google Scholar 

Download references

Acknowledgements

The authors would like to thank the editor and two anonymous referees for their valuable comments which improve this manuscript a lot. Additionally, we are very grateful to Prof. Pierre Jolivet for his kind discussion and help to implement numerical examples with FreeFEM++. Especially, Prof. Pierre Jolivet helps us to do the efficient interpolation between two nonnested meshes which is very important to implement the proposed method in this paper. Here, we express our thanks for all the developers of FreeFEM++.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Chenguang Zhou.

Ethics declarations

Conflict of interest

All authors declare that they have no conflict of interest.

Data availability

All data generated or analysed during the current study are available from the corresponding author on reasonable request.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

This work was supported by Beijing Natural Science Foundation (Z200003), the Research Foundation for Beijing University of Technology New Faculty (006000514122516), the National Center for Mathematics and Interdisciplinary Science, CAS.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Dang, H., Xie, H., Zhao, G. et al. A Nonnested Augmented Subspace Method for Elliptic Eigenvalue Problems with Curved Interfaces. J Sci Comput 94, 34 (2023). https://doi.org/10.1007/s10915-022-02089-y

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10915-022-02089-y

Keywords

Mathematics Subject Classification

Navigation