Abstract
We design a multilevel correction type of adaptive finite element method based on the moving mesh technique for solving nonlinear eigenvalue problems. In this paper, we take the ground state of Bose–Einstein condensates as the example of a nonlinear eigenvalue problem to show the solving process. For this aim, we propose a non-nested augmented subspace method for the nonlinear eigenvalue problems since the sequence of finite element spaces generated by the r-adaptive method has non-nested property. The new method proposed in this paper can improve the efficiency for solving nonlinear eigenvalue problems by the corresponding theoretical analysis and numerical examples.





Similar content being viewed by others
Data Availability
Enquiries about data availability should be directed to the authors.
Code Availability
The code can be made available on reasonable request.
References
Adams, R.A.: Sobolev Spaces. Academic Press, Adams (1975)
Adams, M.F., Bayraktar, H.H., Keaveny, T.M., Papadopoulos, P.: Ultrascalable implicit finite element analyses in solid mechanics with over a half a billion degrees of freedom, In: SC’04: Proceedings of the 2004 ACM/IEEE Conference on Supercomputing, pp. 34–34. IEEE (2004)
Alauzet, F., Frey, P.J.: Estimateur d’erreur géométrique et métriques anisotropes pour l’adaptation de maillage. Partie I: aspects théoriques. Rapport de recherche RR-4759. INRIA, (2003)
Anderson, M.H., Ensher, J.R., Matthews, M.R., Wieman, C.E., Cornell, E.A.: Observation of Bose–Einstein condensation in a dilute atomic vapor. Science 269(5221), 198–201 (1995)
Antoine, X., Levitt, A., Tang, Q.: Efficient spectral computation of the stationary states of rotating Bose–Einstein condensates by preconditioned nonlinear conjugate gradient methods. J. Comput. Phys. 343, 92–109 (2017)
Antoine, X., Tang, Q., Zhang, Y.: A preconditioned conjugated gradient method for computing ground states of rotating dipolar Bose–Einstein condensates via kernel truncation method for dipole–dipole interaction evaluation. Commun. Comput. Phys. 24(4), 966–988 (2018)
Balay, S., Abhyankar, S., Adams, M., Brown, J. et. al.: PETSc users manual revision 3.8, Technical report, Argonne National Lab. (ANL), Argonne, IL (United States) (2017)
Bao, W., Cai, Y.: Mathematical theory and numerical methods for Bose–Einstein condensation. Kinet. Relat. Models 6(1), 1–135 (2013)
Bao, W., Du, Q.: Computing the ground state solution of Bose–Einstein condensates by a normalized gradient flow. SIAM J. Sci. Comput. 25(5), 1674–1697 (2004)
Bao, W., Chern, I.-L., Lim, F.-Y.: Efficient and spectrally accurate numerical methods for computing ground and first excited states in Bose–Einstein condensates. J. Comput. Phys. 219(2), 836–854 (2006)
Bao, G., Hu, G., Liu, D.: Numerical solution of the Kohn–Sham equation by finite element methods with an adaptive mesh redistribution technique. J. Sci. Comput. 55(2), 372–391 (2013)
Beckett, G., MacKenzie, J., Robertson, M.L.: An \(r\)-adaptive finite element method for the solution of the two-dimensional phase-field equations. Commun. Comput. Phys. 1(5), 805–826 (2006)
Brenner, S., Scott, R.: The Mathematical Theory of Finite Element Methods, vol. 15. Springer Science & Business Media, Berlin (2007)
Cancès, E., Chakir, R., Maday, Y.: Numerical analysis of nonlinear eigenvalue problems. J. Sci. Comput. 45(1–3), 90–117 (2010)
Cancès, E., Dusson, G., Maday, Y., Stamm, B., Vohralík, M.: A perturbation-method-based a posteriori estimator for the planewave discretization of nonlinear Schrödinger equations. C. R. Math. 352(11), 941–946 (2014)
Cancès, E., Chakir, R., He, L., Maday, Y.: Two-grid methods for a class of nonlinear elliptic eigenvalue problems. IMA J. Numer. Anal. 38(2), 605–645 (2018)
Chen, H.-S., Chang, S.-L., Chien, C.-S.: Spectral collocation methods using sine functions for a rotating Bose–Einstein condensation in optical lattices. J. Comput. Phys. 231(4), 1553–1569 (2012)
Chien, C.-S., Jeng, B.W.: A two-grid discretization scheme for semilinear elliptic eigenvalue problems. SIAM J. Sci. Comput. 27(4), 1287–1304 (2006)
Chien, C.-S., Huang, H.-T., Jeng, B.-W., Li, Z.-C.: Two-grid discretization schemes for nonlinear Schrödinger equations. J. Comput. Appl. Math. 214(2), 549–571 (2008)
Ciarlet, P.G.: The Finite Element Method for Elliptic Problems. SIAM, New Delhi (2002)
Danaila, I., Kazemi, P.: A new Sobolev gradient method for direct minimization of the Gross–Pitaevskii energy with rotation. SIAM J. Sci. Comput. 32(5), 2447–2467 (2010)
Danaila, I., Protas, B.: Computation of ground states of the Gross–Pitaevskii functional via Riemannian optimization. SIAM J. Sci. Comput. 39(6), B1102–B1129 (2017)
Dapogny, C., Dobrzynski, C., Frey, P.: Three-dimensional adaptive domain remeshing, implicit domain meshing, and applications to free and moving boundary problems. J. Comput. Phys. 262, 358–378 (2014)
Davis, K.B., Mewes, M., Andrews, M.R., van Druten, N.J., Durfee, D.S., Kurn, D.M., Ketterle, W.: Bose–Einstein condensation in a gas of sodium atoms. Phys. Rev. Lett. 75(22), 3969 (1995)
Frey, P.-J., Alauzet, F.: Anisotropic mesh adaptation for CFD computations. Comput. Methods Appl. Mech. Eng. 194(48–49), 5068–5082 (2005)
García-Ripoll, J.J., Pérez-García, V.M.: Optimizing Schrödinger functionals using Sobolev gradients: Applications to quantum mechanics and nonlinear optics. SIAM J. Sci. Comput. 23(4), 1316–1334 (2001)
Hecht, F.: New development in FreeFem++. J. Numer. Math. 20(3–4), 251–266 (2012)
Heid, P., Stamm, B., Wihler, T.P.: Gradient flow finite element discretizations with energy-based adaptivity for the Gross–Pitaevskii equation. J. Comput. Phys. 436, 110165 (2021)
Hernandez, V., Roman, J.E., Vidal, V.: SLEPc: A scalable and flexible toolkit for the solution of eigenvalue problems. ACM Trans. Math. Softw. (TOMS) 31(3), 351–362 (2005)
Hu, G., Zegeling, P.A.: Simulating finger phenomena in porous media with a moving finite element method. J. Comput. Phys. 230(8), 3249–3263 (2011)
Hu, G., Qiao, Z., Tang, T.: Moving finite element simulations for reaction-diffusion systems. Adv. Appl. Math. Mech. 4(3), 365–381 (2012)
Jeng, B.W., Chien, C.S., Chern, I.L.: Spectral collocation and a two-level continuation scheme for dipolar Bose–Einstein condensates. J. Comput. Phys. 256, 713–727 (2014)
Jia, S., Xie, H., Xie, M., Xu, F.: A full multigrid method for nonlinear eigenvalue problems. Sci. China Math. 59(10), 2037–2048 (2016)
Jolivet, P., Hecht, F., Nataf, F., Prud’Homme, C.: Scalable domain decomposition preconditioners for heterogeneous elliptic problems. Sci. Program. 22(2), 157–171 (2014)
Li, X.-G., Zhu, J., Zhang, R.-P., Cao, S.: A combined discontinuous Galerkin method for the dipolar Bose–Einstein condensation. J. Comput. Phys. 275, 363–376 (2014)
Lieb, E.H., Seiringer, R., Yngvason, J.: Bosons in a trap: A rigorous derivation of the Gross–Pitaevskii energy functional. Phys. Rev. A 61, 043602 (2000)
Lin, Q., Xie, H.: A multi-level correction scheme for eigenvalue problems. Math. Comput. 84(291), 71–88 (2015)
Tang, T.: Moving mesh methods for computational fluid dynamics. Contemp. Math. 383(8), 141–173 (2005)
van Dam, A., Zegeling, P.A.: A robust moving mesh finite volume method applied to 1D hyperbolic conservation laws from magnetohydrodynamics. J. Comput. Phys. 216(2), 526–546 (2006)
Wang, H., Li, R., Tang, T.: Efficient computation of dendritic growth with \(r\)-adaptive finite element methods. J. Comput. Phys. 227(12), 5984–6000 (2008)
Wu, X., Wen, Z., Bao, W.: A regularized Newton method for computing ground states of Bose–Einstein condensates. J. Sci. Comput. 73(1), 303–329 (2017)
Xie, H.: A multigrid method for eigenvalue problem. J. Comput. Phys. 274, 550–561 (2014)
Xie, H.: A multigrid method for nonlinear eigenvalue problems. Sci Sin. (Mathematica) 45, 1193–1204 (2015)
Xie, H., Xie, M.: A multigrid method for ground state solution of Bose–Einstein condensates. Commun. Comput. Phys. 19(3), 648–662 (2016)
Xie, H., Xie, M.: Computable error estimates for ground state solution of Bose–Einstein condensates. J. Sci. Comput. 81(2), 1072–1087 (2019)
Xu, F.: A cascadic adaptive finite element method for nonlinear eigenvalue problems in quantum physics. Multiscale Model. Simul. 18(1), 198–220 (2020)
Zhang, N., Xu, F., Xie, H.: An efficient multigrid method for ground state solution of Bose–Einstein condensates. Int. J. Numer. Anal. Model. 16(5), 789–803 (2019)
Zhou, A.: An analysis of finite-dimensional approximations for the ground state solution of Bose–Einstein condensates. Nonlinearity 17(2), 541–550 (2004)
Acknowledgements
The authors would like to thank both referees for their valuable comments and helpful suggestions that improved this paper.
Funding
The first author (H. Xie) was supported in part by the National Key Research and Development Program of China (2019YFA0709601), Beijing Natural Science Foundation (Z200003) and the National Center for Mathematics and Interdisciplinary Science, CAS. The second author (M. Xie) was supported in part by the National Natural Science Foundation of China (Nos. 12001402, 12071343, 12271400). The third author (X. Yin) was supported by the Hubei Provincial Science and Technology Innovation Base (Platform) Special Project (No. 2020DFH002).
Author information
Authors and Affiliations
Corresponding author
Ethics declarations
Conflict of interest
This work does not have any conflicts of interest.
Additional information
Publisher's Note
Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
Rights and permissions
Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.
About this article
Cite this article
Xie, H., Xie, M., Yin, X. et al. An Efficient Adaptive Mesh Redistribution Method for Nonlinear Eigenvalue Problems in Bose–Einstein Condensates. J Sci Comput 94, 37 (2023). https://doi.org/10.1007/s10915-022-02093-2
Received:
Revised:
Accepted:
Published:
DOI: https://doi.org/10.1007/s10915-022-02093-2
Keywords
- Nonlinear eigenvalue problem
- Bose–Einstein condensates
- Non-nested augmented subspace method
- Tensor technique
- Moving mesh