Skip to main content
Log in

Convergence and Error Estimates of a Mixed Discontinuous Galerkin-Finite Element Method for the Semi-stationary Compressible Stokes System

  • Published:
Journal of Scientific Computing Aims and scope Submit manuscript

Abstract

In this paper, we study a mixed discontinuous Galerkin-finite element method (DG-FEM) for solving the semi-stationary compressible Stokes system in a bounded domain. The approximation of continuity equation is obtained by a piecewise constant discontinuous Galerkin method. The discretization of momentum equation is obtained by conforming Bernardi–Raugel finite elements. The convergence of mixed DG-FEM for nonlinear, isentropic stokes problem is rigorously established by compactness arguments and the existence analysis of Lions on the discrete level. Employing the continuous relative energy functional method and a detailed consistency analysis, we derive two error estimates for the numerical solution of the semi-stationary isentropic stokes system. In particular, we establish the \(L^2\) error estimates for the pressure. All convergence results do not require the boundedness of numerical solutions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Agmon, S.: Lectures on elliptic boundary value problems. Prepared for publication by B. Frank Jones, Jr. with the assistance of George W. Batten, Jr. Van Nostrand Mathematical Studies, No. 2. D. Van Nostrand Co., Inc., Princeton, N.J.-Toronto-London (1965)

  2. Akbas, M., Gallouët, T., Gassmann, A., Linke, A., Merdon, C.: A gradient-robust well-balanced scheme for the compressible isothermal Stokes problem. Comput. Methods Appl. Mech. Engrg. 367, 113069 (2020)

    Article  MathSciNet  MATH  Google Scholar 

  3. Bernardi, C., Raugel, G.: Analysis of some finite elements for the Stokes problem. Math. Comp. 44(169), 71–79 (1985)

    Article  MathSciNet  MATH  Google Scholar 

  4. Bogovskiĭ, M.E.: Solutions of some problems of vector analysis, associated with the operators \({\rm div}\) and \({\rm grad}\). In Theory of cubature formulas and the application of functional analysis to problems of mathematical physics, volume 1980 of Trudy Sem. S. L. Soboleva, No. 1, pp 5–40, 149. Akad. Nauk SSSR Sibirsk. Otdel., Inst. Mat., Novosibirsk (1980)

  5. Brenner, S.C., Ridgway Scott, L.: The mathematical theory of finite element methods, volume 15 of Texts in Applied Mathematics. Springer, New York (1994)

  6. DiPerna, R.J., Lions, P.-L.: Ordinary differential equations, transport theory and Sobolev spaces. Invent. Math. 98(3), 511–547 (1989)

    Article  MathSciNet  MATH  Google Scholar 

  7. Dreher, M., Jüngel, A.: Compact families of piecewise constant functions in \(L^p(0, T;B)\). Nonlinear Anal. 75(6), 3072–3077 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  8. Evans, L.C.: Partial differential equations. Graduate Studies in Mathematics, vol. 19. American Mathematical Society, Providence, RI (1998)

  9. Eymard, R., Gallouët, T., Herbin, R., Latché, J.-C.: Convergence of the MAC scheme for the compressible Stokes equations. SIAM J. Numer. Anal. 48(6), 2218–2246 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  10. Eymard, R., Gallouët, T., Herbin, R., Latché, J.C.: A convergent finite element-finite volume scheme for the compressible Stokes problem. II. The isentropic case. Math. Comp. 79(270), 649–675 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  11. Feireisl, E.: Dynamics of viscous compressible fluids. Oxford Lecture Series in Mathematics and its Applications, vol. 26. Oxford University Press, Oxford (2004)

  12. Feireisl, E., Hošek, R., Maltese, D., Novotný, A.: Error estimates for a numerical method for the compressible Navier–Stokes system on sufficiently smooth domains. ESAIM, Math. Model. Numer. Anal. 51(1), 279–319 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  13. Feireisl, E., Jin, B.J., Novotný, A.: Relative entropies, suitable weak solutions, and weak-strong uniqueness for the compressible Navier-Stokes system. J. Math. Fluid Mech. 14(4), 717–730 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  14. Feireisl, E., Karper, T., Novotný, A.: A convergent numerical method for the Navier–Stokes–Fourier system. IMA J. Numer. Anal. 36(4), 1477–1535 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  15. Feireisl, E., Karper, T.G., Pokorný, M.: Mathematical theory of compressible viscous fluids. Advances in Mathematical Fluid Mechanics. Birkhäuser/Springer, Cham (2016). Analysis and Numerics, Lecture Notes in Mathematical Fluid Mechanics

  16. Feireisl, E., Novotný, A.: Singular limits in thermodynamics of viscous fluids. Advances in Mathematical Fluid Mechanics. Birkhäuser Verlag, Basel (2009)

    Book  MATH  Google Scholar 

  17. Feireisl, E., Novotný, A., Sun, Y.: Suitable weak solutions to the Navier-Stokes equations of compressible viscous fluids. Indiana Univ. Math. J. 60(2), 611–631 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  18. Fettah, A., Gallouët, T.: Numerical approximation of the general compressible Stokes problem. IMA J. Numer. Anal. 33(3), 922–951 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  19. Galdi, G.P.: An introduction to the mathematical theory of the Navier-Stokes equations. Vol. I, volume 38 of Springer Tracts in Natural Philosophy. Springer, New York (1994). Linearized steady problems

  20. Gallouët, T., Herbin, R., Latché, J.-C.: A convergent finite element-finite volume scheme for the compressible Stokes problem. I. The isothermal case. Math. Comp. 78(267), 1333–1352 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  21. Gallouët, T., Herbin, R., Maltese, D., Novotny, A.: Convergence of the marker-and-cell scheme for the semi-stationary compressible Stokes problem. Math. Comput. Simul. 137, 325–349 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  22. Gallouët, T., Gastaldo, L., Herbin, R., Latché, J.-C.: An unconditionally stable pressure correction scheme for the compressible barotropic Navier–Stokes equations. M2AN Math. Model. Numer. Anal. 42(2), 303–331 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  23. Gallouët, T., Herbin, R., Maltese, D., Novotny, A.: Error estimates for a numerical approximation to the compressible barotropic Navier–Stokes equations. IMA J. Numer. Anal. 36(2), 543–592 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  24. Gallouët, T., Maltese, D., Novotny, A.: Error estimates for the implicit MAC scheme for the compressible Navier–Stokes equations. Numer. Math. 141(2), 495–567 (2019)

    Article  MathSciNet  MATH  Google Scholar 

  25. Girault, V., Raviart, P.-A.: Finite element methods for Navier–Stokes equations, volume 5 of Springer Series in Computational Mathematics. Springer, Berlin (1986) Theory and algorithms

  26. Karlsen, K.H., Karper, T.K.: A convergent nonconforming finite element method for compressible Stokes flow. SIAM J. Numer. Anal. 48(5), 1846–1876 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  27. Karlsen, K.H., Karper, T.K.: Convergence of a mixed method for a semi-stationary compressible Stokes system. Math. Comp. 80(275), 1459–1498 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  28. Karper, T.K.: A convergent FEM-DG method for the compressible Navier–Stokes equations. Numer. Math. 125(3), 441–510 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  29. Kwon, Y.-S., Novotný, A.: Construction of weak solutions to compressible Navier–Stokes equations with general inflow/outflow boundary conditions via a numerical approximation. Numer. Math. 149(4), 717–778 (2021)

    Article  MathSciNet  MATH  Google Scholar 

  30. Lions, P.-L.: Mathematical topics in fluid mechanics. Vol. 2, volume 10 of Oxford Lecture Series in Mathematics and its Applications. The Clarendon Press, Oxford University Press, New York (1998) Compressible models, Oxford Science Publications

  31. Mizerová, H., She, B.: Convergence and error estimates for a finite difference scheme for the multi-dimensional compressible Navier–Stokes system. J. Sci. Comput. 84(1), Paper No. 25, 39 (2020)

Download references

Acknowledgements

The research was supported by National Natural Science Foundation of China (Nos. 11871467, 12271514 and 12161141017).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Wendong Xue.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendix

Appendix

1.1 The Proof of Theorem 3.3

Our goal is to show the existence of numerical solutions for the scheme (3.7)–(3.8) by applying Schaeffer’s fixed point theorem. For this purpose, we define the mapping

$$\begin{aligned} {\mathcal {L}}:{\mathbb {V}}_h\rightarrow {\mathbb {V}}_h,\quad {\mathcal {L}}[\varvec{u}]\mapsto \varvec{U}, \end{aligned}$$

in the following way.

  • Given \(\varvec{u}\in {\mathbb {V}}_h\), we will prove the unique solution \(\rho \in {\mathbb {Q}}_h\) of the linear system

    $$\begin{aligned} \int _{\varOmega }{\frac{\rho -\rho _h^{n-1}}{\tau }\varphi _h}dx&-\sum _{F\in {\mathcal {F}}_{h,int}}{\int _{F}{{\text {Up}}[\rho ,\varvec{u}]-h^{\epsilon -1}\llbracket {\rho }\rrbracket \llbracket {\varphi _h}\rrbracket }dS}\nonumber \\&+h^{\epsilon -1}\sum _{F\in {\mathcal {F}}_{h,int}}{\int _{F}{\llbracket {\rho }\rrbracket \llbracket {\varphi _h}\rrbracket }dS}=0, \end{aligned}$$
    (A.1)

    for any \(\varphi _h\in {\mathbb {Q}}_h\). In order to prove the linear problem (A.1) has a unique solution \(\rho (\varvec{u})\), we need prove that the associated homogenous problem

    $$\begin{aligned} \int _{\varOmega }{\rho \varphi _h}dx-\tau \sum _{F\in {\mathcal {F}}_{h,int}}{\int _{F}{{\text {Up}}\left[ \rho ,\varvec{u}\right] \llbracket {\varphi _h}\rrbracket }dS}+h^{\epsilon -1}\tau \sum _{F\in {\mathcal {F}}_{h,int}}{\int _{F}{\llbracket {\rho }\rrbracket \llbracket {\varphi _h}\rrbracket }dS}=0 \end{aligned}$$
    (A.2)

    admits a unique solution \(\rho =0\). By the same proof of [14, Section 4.3], we can show the homogenous problem (A.2) of renormalized equation

    $$\begin{aligned}&\int _{\varOmega }{{\mathcal {B}}'(\rho )\rho \varphi _h}dx-\tau \sum _{F\in {\mathcal {F}}_{h,int}}{\int _{F}{{\text {Up}}[{\mathcal {B}}(\rho ),\varvec{u}]\llbracket {\varphi _h}\rrbracket }dS}\nonumber \\&+h^{\epsilon -1}\tau \sum _{F\in {\mathcal {F}}_{h,int}}{\int _{F}{{\mathcal {B}}'(\rho _{+})\llbracket \rho \rrbracket \llbracket \varphi _h\rrbracket }dS}+h^{\epsilon -1}\tau \sum _{F\in {\mathcal {F}}_{h,int}}{\int _{F}{{\mathcal {B}}''({\overline{\eta }}_{\rho })\llbracket \rho \rrbracket ^2}dS}\nonumber \\&+\frac{\tau }{2}\sum _{F\in {\mathcal {F}}_{h,int}}{\int _{F}{\varphi _{h}{\mathcal {B}}''(\eta _{\rho })\llbracket \rho \rrbracket ^2|\varvec{u}\cdot \varvec{n}|}dS}=\tau \int _{\varOmega }{\varphi _h({\mathcal {B}}(\rho )-{\mathcal {B}}'(\rho )\rho ){\text {div}}\varvec{u}}dx, \end{aligned}$$
    (A.3)

    for any \(\varphi _h\in {\mathbb {Q}}_h\), where \({\mathcal {B}}\in C^2({\mathbb {R}}_{+})\), \({\overline{\eta }}_{\rho },\eta _{\rho }\in {\text {co}}\{\rho ,\rho _{+}\}\) on each face \(F\in {\mathcal {F}}_h\). Any non negative \(C^2({\mathbb {R}})\) convex approximations function \({\mathcal {S}}_{\epsilon }\) such that \({\mathcal {S}}_{\epsilon }(\rho )\rightarrow {\mathcal {S}}(\rho )\) and \({\mathcal {S}}_{\epsilon }'(\rho )\rightarrow {\mathcal {S}}'(\rho )\) for all \(\rho \ne 0\), where \({\mathcal {S}}(\rho )=\max \{-\rho ,0\}\). Taking \((\varphi _h,{\mathcal {B}})=(1,{\mathcal {S}}_{\epsilon })\) in (A.3), we have

    $$\begin{aligned} \int _{\varOmega }{{\mathcal {S}}_{\epsilon }(\rho )}dx\le \tau \int _{\varOmega }{\varphi _h({\mathcal {S}}_{\epsilon }(\rho )-{\mathcal {S}}_{\epsilon }'(\rho )\rho ){\text {div}}\varvec{u}}dx+\int _{\varOmega }{({\mathcal {S}}_{\epsilon }(\rho )-{\mathcal {S}}_{\epsilon }'(\rho )\rho )}dx. \end{aligned}$$
    (A.4)

    Combining the inequality (A.4) and \({\mathcal {S}}(\rho )-{\mathcal {S}}'(\rho )\rho =0\) for all \(\rho \ne 0\), we obtain \({\mathcal {S}}(\rho )=0\) and \(\rho \ge 0\). Let \(\varphi _h=1\) in (A.2), we obtain

    $$\begin{aligned} \int _{\varOmega }{\rho }dx=0. \end{aligned}$$
    (A.5)

    According to \(\rho \ge 0\) and (A.5), we have \(\rho =0\), then the problem (A.1) has a unique solution \(\rho (\varvec{u})\). By applying the Lemma 3.3, we have \(\rho (\varvec{u})>0\).

  • For given \(\rho \in {\mathbb {Q}}_h\) and \(\varvec{u}\in {\mathbb {V}}_h\), we can show the unique solution \(\varvec{U}\in {\mathbb {V}}_h\) of the algebraic system

    $$\begin{aligned} \int _{\varOmega }{[\mu \nabla \varvec{U}:\nabla \varvec{v}_h+(\lambda +\mu ){\text {div}}\varvec{U}{\text {div}}\varvec{v}_h]}dx=\int _{\varOmega }{p(\rho ){\text {div}}\varvec{v}_h}dx, \end{aligned}$$
    (A.6)

    for any \(\varvec{v}_h\in {\mathbb {V}}_h\), where \(\rho =\rho (\varvec{u})\) is determined by (A.1). Similarly, by applying the Lax-Milgram Lemma for the linear system (A.6), we have a unique solution \(\varvec{U}\in {\mathbb {V}}_h\).

Clearly, any fixed point of the mapping \({\mathcal {L}}\) is a solution of the scheme (3.7)–(3.8). Next, we need show that the set

$$\begin{aligned} \{\varvec{z}\in {\mathbb {V}}_h:\varvec{z}=\varLambda {\mathcal {L}}(\varvec{z}),\;\varLambda \in [0,1]\} \end{aligned}$$

satisfies the conditions of Lemma 3.5. In other words, we need to verify that the set is non empty and bounded. It is obvious show that the set is non empty (\({\textbf{0}}\) belongs to the set). Finally, for all \(\varLambda \in (0,1]\), we need to prove the solution \(\varvec{u}\) of the equation \(\varvec{u}=\varLambda {\mathcal {L}}[\varvec{u}]\) can be bounded in terms of the local data \((\rho _h^{n-1},\varvec{u}_h^{n-1})\) uniformly with respect to \(\varLambda \). Setting \(\rho _h^n=\rho (\varvec{u})\), \(\varvec{u}_h^n=\varvec{u}\) in (3.7)–(3.8), where \(\varvec{u}\) is a solution of \(\varvec{u}=\varLambda {\mathcal {L}}[\varvec{u}]\), we have

$$\begin{aligned} \int _{\varOmega }{d_t\rho _h^n\varphi _h}dx-\sum _{F\in {\mathcal {F}}_{h,int}}{\int _{F}{{\text {Up}}\left[ \rho _h^n,\varvec{u}_h^n\right] \llbracket {\varphi _h}\rrbracket }dS}\\ +h^{\epsilon -1}\sum _{F\in {\mathcal {F}}_{h,int}}{\int _{F}{\llbracket {\rho _h^n}\rrbracket \llbracket {\varphi _h}\rrbracket }dS}=0,\\ \varLambda ^{-1}\int _{\varOmega }{\left[ \mu \nabla \varvec{u}_h^n:\nabla \varvec{v}_h+(\lambda +\mu ){\text {div}}\varvec{u}_h^n{\text {div}}\varvec{v}_h\right] }dx-\int _{\varOmega }{p(\rho _h^n){\text {div}}\varvec{v}_h}dx=0. \end{aligned}$$

By recalling the steps in the proof of discrete energy estimate (3.10), we can show

$$\begin{aligned} \int _{\varOmega }{{\mathcal {H}}(\rho _h^n)}dx+\frac{1}{\varLambda }\int _{\varOmega }{[\mu |\nabla \varvec{u}_h^n|^2+(\lambda +\mu )|{\text {div}}\varvec{u}_h^n|^2]}dx\le \int _{\varOmega }{{\mathcal {H}}(\rho _h^{n-1})}dx. \end{aligned}$$
(A.7)

Combining (A.7) and \(0<\varLambda \le 1\), there exists a constant C independent of \(\varLambda \) such that

$$\begin{aligned} \Vert \varvec{u}_h^n\Vert _{{\mathbb {V}}_h}^2:=\mu \Vert \nabla \varvec{u}_h^n\Vert _{\varvec{L}^2(\varOmega )}^2\le C. \end{aligned}$$

Combining the above conclusions and Lemma 3.5, we can show the schemes (3.7)–(3.8) has at least one solution. By applying the Lemma 3.3, we obtain the density \(\rho _h^n>0\). The proof is thus complete.

1.2 The Proof of Theorem 6.1

Taking the zero extension of \(\varvec{v}_h\) for \({\mathbb {R}}^d\setminus \varOmega \). We show the proof of this Theorem in two steps. Step 1. If \(q=2\), for any \(\varvec{x}\in {\mathbb {R}}^d\), it is easy to check that

$$\begin{aligned} \varvec{v}_h(\varvec{x})-\varvec{v}_h(\varvec{x}-\varvec{\xi })=\int _0^1{\nabla \varvec{v}_h(\varvec{x}-s\varvec{\xi })\cdot \varvec{\xi }}ds. \end{aligned}$$
(A.8)

For the identity (A.8), by applying Cauchy–Schwarz inequality, we conclude that

$$\begin{aligned} |\varvec{v}_h(\varvec{x})-\varvec{v}_h(\varvec{x}-\varvec{\xi })|^2\le |\varvec{\xi }|^2\int _0^1{|\nabla \varvec{v}_h(\varvec{x}-s\varvec{\xi })|^2}ds. \end{aligned}$$

Therefor, by employing Fubini theorem and \(\nabla \varvec{v}_h\) vanishes outside \(\varOmega \), we have

$$\begin{aligned} \int _{{\mathbb {R}}^d}{|\varvec{v}_h(\varvec{x})-\varvec{v}_h(\varvec{x}-\varvec{\xi })|^2}dx\le |\varvec{\xi }|^2\int _{\varOmega }{|\nabla \varvec{v}_h(\varvec{x})|^2}dx. \end{aligned}$$
(A.9)

Step 2. For the case of \(2<q\le 6\), by applying Gagliardo-Nirenberg interpolation inequality and (A.9), we obtain

$$\begin{aligned} \Vert \varvec{v}_h(\cdot )-\varvec{v}_h(\cdot -\varvec{\xi })\Vert _{\varvec{L}^q({\mathbb {R}}^d)}\le&\Vert \varvec{v}_h(\cdot )-\varvec{v}_h(\cdot -\varvec{\xi })\Vert _{\varvec{L}^2({\mathbb {R}}^d)}^{\theta }\Vert \varvec{v}_h(\cdot )-\varvec{v}_h(\cdot -\varvec{\xi })\Vert _{\varvec{L}^6({\mathbb {R}}^d)}^{1-\theta }\nonumber \\ \le&|\varvec{\xi }|^{\theta }\Vert \nabla \varvec{v}_h\Vert _{\varvec{L}^2(\varOmega )}^{\theta }\Vert \varvec{v}_h(\cdot )-\varvec{v}_h(\cdot -\varvec{\xi })\Vert _{\varvec{L}^6({\mathbb {R}}^d)}^{1-\theta }. \end{aligned}$$
(A.10)

According to the embedding \(\varvec{H}_0^1\hookrightarrow \varvec{L}^6\) and the Poincaré inequality, we get

$$\begin{aligned} \Vert \varvec{v}_h(\cdot )-\varvec{v}_h(\cdot -\varvec{\xi })\Vert _{\varvec{L}^6({\mathbb {R}}^d)}\le C\Vert \nabla \varvec{v}_h\Vert _{\varvec{L}^2(\varOmega )}. \end{aligned}$$
(A.11)

Inserting (A.11) into (A.10), which implies that

$$\begin{aligned} \Vert \varvec{v}_h(\cdot )-\varvec{v}_h(\cdot -\varvec{\xi })\Vert _{\varvec{L}^q({\mathbb {R}}^d)}\le C|\varvec{\xi }|^{\theta }\Vert \nabla \varvec{v}_h\Vert _{\varvec{L}^2(\varOmega )}. \end{aligned}$$
(A.12)

Combining the inequalities (A.9) and (A.12), the proof is thus complete.

1.3 Some Functional Analysis Results

For the convenience of readers, we list some functional analysis results that need to be used in this article. We first recall the following weak convergence and monotonicity properties (see, e.g., [16, Theorem 10.19]):

Lemma A.1

Let \(I\subset {\mathbb {R}}\) be an interval, \(Q\subset {\mathbb {R}}^N\) a domain, and \((P,G)\in C(I)\times C(I)\) a couple of non-decreasing functions. Assume that \(\rho _n\in L^1(Q;I)\) is a sequence such that

$$\begin{aligned} \left\{ \begin{aligned} P(\rho _n)&\rightharpoonup \overline{P(\rho )},\\ G(\rho _n)&\rightharpoonup \overline{G(\rho )},\\ P(\rho _n)G(\rho _n)&\rightharpoonup \overline{P(\rho )G(\rho )}, \end{aligned} \right\} \quad {\text {in}}\; L^1(Q). \end{aligned}$$

(i) Then \(\overline{P(\rho )}\;\overline{G(\rho )}\le \overline{P(\rho )G(\rho )}\). (ii) If, in addition, \(G\in C({\mathbb {R}})\), \(G({\mathbb {R}})={\mathbb {R}}\), G is strictly increasing, \(P\in C({\mathbb {R}})\), P is non-decreasing, and \(\overline{P(\rho )}\;\overline{G(\rho )}=\overline{P(\rho )G(\rho )}\), then \(\overline{P(\rho )}=P\circ G^{-1}(\overline{G(\rho )})\). (iii) In particular, if \(G(z)=z\), then \(\overline{P(\rho )}=P(\rho )\).

Secondly, the convex function have the lower semi-continuous with respect to the weak topology on \(L^1(O)\) (see, e.g., [11, Theorem 2.11]).

Lemma A.2

Let \(O\subset {\mathbb {R}}^N\) be a measurable set and \(\{\varvec{v}_n\}_{n=1}^\infty \) a sequence of functions in \(L^1(O;{\mathbb {R}}^M)\) such that

$$\begin{aligned} \varvec{v}_n\rightharpoonup \varvec{v},\;{\text {in}}\; L^1(O;{\mathbb {R}}^M). \end{aligned}$$

Let \(\varPhi :{\mathbb {R}}^M\rightarrow (-\infty ,\infty ]\) be a lower semi-continuous convex function such that \(\varPhi (\varvec{v}_n)\in L^1(O)\) for any n, and

$$\begin{aligned} \varPhi (\varvec{v}_n)\rightharpoonup \overline{\varPhi (\varvec{v})},\;{\text {in}}\; L^1(O). \end{aligned}$$

Then

$$\begin{aligned} \varPhi (\varvec{v})\le \overline{\varPhi (\varvec{v})}\;{\text {a.a.}}\;{\text {on}}\; O. \end{aligned}$$

If, moreover, \(\varPhi \) is strictly on an open convex set \(U\subset {\mathbb {R}}^M\), and

$$\begin{aligned} \varPhi (\varvec{v})=\overline{\varPhi (\varvec{v})}\;{\text {a.a.}}\;{\text {on}}\; O, \end{aligned}$$

then

$$\begin{aligned} \varvec{v}_n(\varvec{y})\rightarrow \varvec{v}(\varvec{y})\;{\text {for}}\;{\text {a.a.}}\;\varvec{y}\in \{\varvec{y}\in O:\varvec{v}(\varvec{y})\in U\} \end{aligned}$$

extracting subsequence as the case may be.

Next, we introduce the following sequential compactness (see, e.g., [15, Lemma 3]).

Lemma A.3

Let \(Q\subset {\mathbb {R}}^M\), suppose that \(\rho _n\rightharpoonup \rho \) in \(L^2(Q)\) and \(\overline{\rho \log (\rho )}=\rho \log (\rho )\) are satisfied. Then

$$\begin{aligned} \rho _n\rightarrow \rho \;{\text {in}}\; L^1(Q). \end{aligned}$$

Finally, we recall the following discrete version of the Aubin-Lions compactness Lemma for the Bochner spaces, which is useful in the convergence analysis. (see, e.g., [7, Theorem 1]).

Lemma A.4

Let \({\mathbb {E}}_0\), \({\mathbb {E}}\) and \({\mathbb {E}}_1\) be Banach spaces such that the embedding \({\mathbb {E}}_0\hookrightarrow {\mathbb {E}}\) is compact and \({\mathbb {E}}\hookrightarrow {\mathbb {E}}_1\) is continuous. Given \(T>0\) and a small number \(\tau >0\), write \((0,T]=\cup _{k=1}^M(t_{k-1},t_k]\) with \(t_k=k\tau \) and \(M\tau =T\). Let \(\{v_\tau \}_{\tau >0}\) be a sequence such that

  • The mapping \(t\mapsto v_\tau (t,\cdot )\) is constant on each interval \((t_{k-1},t_k]\), \(k=1,2,\ldots ,M\).

  • Let \(D_tv_\tau (t,\cdot )=(v_\tau (t,\cdot )-v_\tau (t-\tau ,\cdot ))/\tau \) be the discrete time derivative of \(v_\tau (t,\cdot )\). The sequence \(\{v_\tau \}_{\tau >0}\) satisfies the following estimates:

    $$\begin{aligned} \Vert v_\tau \Vert _{L^{p_0}(0,T;{\mathbb {E}}_0)}+\Vert D_tv_\tau \Vert _{L^{p_1}(\tau ,T;{\mathbb {E}}_1)}\le C, \end{aligned}$$

    for any \(1<p_0,p_1<\infty \), where \(C_0\) is a constant which is independent of \(\tau \).

Then \(\{v_\tau \}_{\tau >0}\) is relatively compact in \(L^{p_0}(0,T;{\mathbb {E}})\).

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mao, S., Xue, W. Convergence and Error Estimates of a Mixed Discontinuous Galerkin-Finite Element Method for the Semi-stationary Compressible Stokes System. J Sci Comput 94, 47 (2023). https://doi.org/10.1007/s10915-023-02096-7

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10915-023-02096-7

Keywords

Navigation