Abstract
In this work, we are concerned with strong stability preserving multistep (SSPM) schemes for forward backward stochastic differential equations (FBSDEs). To this aim, we first perform a comprehensive analysis on a general type of multistep schemes for FBSDEs, based on which we present new sufficient conditions on the coefficients such that the associated schemes are stable and enjoy certain order of consistency. Upon these results, we propose a practical way to design high-order SSPM schemes for FBSDEs. Numerical experiments are carried out to demonstrate the strong stability of our SSPM schemes.

Similar content being viewed by others

Data Availability
The data will be made available on reasonable request to the authors.
References
Bally, V.: Approximation scheme for solutions of BSDE. In: Backward Stochastic Differential Equations, Paris, 1995–1996, Pitman Res. Notes Math. Ser., vol 364, Longman, Harlow, pp. 177–191 (1997)
Bender, C., Zhang, J.: Time discretization and Markovian iteration for coupled FBSDEs. Ann. Appl. Probab. 18(1), 143–177 (2008). https://doi.org/10.1214/07-AAP448
Bouchard, B., Touzi, N.: Discrete-time approximation and Monte–Carlo simulation of backward stochastic differential equations. Stoch. Process. Appl. 111(2), 175–206 (2004). https://doi.org/10.1016/j.spa.2004.01.001
Butcher, J.C.: Numerical Methods for Ordinary Differential Equations, 3rd edn. John Wiley & Sons, Ltd., Chichester, https://doi.org/10.1002/9781119121534, with a foreword by J. M. Sanz-Serna (2016)
Chassagneux, J.F.: Linear multistep schemes for BSDEs. SIAM J. Numer. Anal. 52(6), 2815–2836 (2014). https://doi.org/10.1137/120902951
Chassagneux, J.F., Crisan, D.: Runge–Kutta schemes for backward stochastic differential equations. Ann. Appl. Probab. 24(2), 679–720 (2014). https://doi.org/10.1214/13-AAP933
Chassagneux, J.F., Richou, A.: Numerical stability analysis of the Euler scheme for BSDEs. SIAM J. Numer. Anal. 53(2), 1172–1193 (2015). https://doi.org/10.1137/140977047
Chevance, D.: Numerical Methods for Backward Stochastic Differential Equations. In: Numerical methods in finance, Publ. Newton Inst., vol 13, Cambridge University Press, Cambridge, pp. 232–244 (1997)
Delarue, F., Menozzi, S.: A forward–backward stochastic algorithm for quasi-linear PDEs. Ann. Appl. Probab. 16(1), 140–184 (2006). https://doi.org/10.1214/105051605000000674
Douglas, J., Jr., Ma, J., Protter, P.: Numerical methods for forward–backward stochastic differential equations. Ann. Appl. Probab. 6(3), 940–968 (1996). https://doi.org/10.1214/aoap/1034968235
El Karoui, N., Peng, S., Quenez, M.C.: Backward stochastic differential equations in finance. Math Finance 7(1), 1–71 (1997). https://doi.org/10.1111/1467-9965.00022
Gobet, E., Labart, C.: Error expansion for the discretization of backward stochastic differential equations. Stoch. Process. Appl. 117(7), 803–829 (2007). https://doi.org/10.1016/j.spa.2006.10.007
Gobet, E., Lemor, J.P., Warin, X.: A regression-based Monte Carlo method to solve backward stochastic differential equations. Ann. Appl. Probab. 15(3), 2172–2202 (2005). https://doi.org/10.1214/105051605000000412
Gottlieb, S., Shu, C.W., Tadmor, E.: Strong stability-preserving high-order time discretization methods. SIAM Rev. 43(1), 89–112 (2001). https://doi.org/10.1137/S003614450036757X
Gottlieb, S., Ketcheson, D.I., Shu, C.W.: High order strong stability preserving time discretizations. J. Sci. Comput. 38(3), 251–289 (2009). https://doi.org/10.1007/s10915-008-9239-z
Gottlieb, S., Ketcheson, D., Shu, CW.: Strong Stability Preserving Runge–Kutta and Multistep Time Discretizations. World Scientific Publishing Co. Pte. Ltd., Hackensack, NJ. https://doi.org/10.1142/7498 (2011)
Hairer, E., Wanner, G.: Solving Ordinary Differential Equations. II, Springer Series in Computational Mathematics, vol 14, 2nd edn. Springer-Verlag, Berlin. https://doi.org/10.1007/978-3-642-05221-7, stiff and differential-algebraic problems (1996)
Hairer, E., Nø rsett, S.P., Wanner, G.: Solving Ordinary Differential Equations. I, Springer Series in Computational Mathematics, vol 8, 2nd edn. Springer-Verlag, Berlin, nonstiff problems (1993)
Henry-Labordère, P., Tan, X., Touzi, N.: A numerical algorithm for a class of BSDEs via the branching process. Stoch. Process. Appl. 124(2), 1112–1140 (2014). https://doi.org/10.1016/j.spa.2013.10.005
Ketcheson, D.I.: High order strong stability preserving time integrators and numerical wave propagation methods for hyperbolic PDEs. ProQuest LLC, Ann Arbor, MI, thesis (Ph.D.)–University of Washington (2009)
Kloeden, P.E., Platen, E.: Numerical Solution of Stochastic Differential Equations, Applications of Mathematics (New York), vol 23. Springer-Verlag, Berlin (1992). https://doi.org/10.1007/978-3-662-12616-5
Lenferink, H.W.J.: Contractivity preserving explicit linear multistep methods. Numer. Math. 55(2), 213–223 (1989). https://doi.org/10.1007/BF01406515
Lenferink, H.W.J.: Contractivity-preserving implicit linear multistep methods. Math. Comp. 56(193), 177–199 (1991). https://doi.org/10.2307/2008536
Liu, Y., Sun, Y., Zhao, W.: A fully discrete explicit multistep scheme for solving coupled forward backward stochastic differential equations. Adv. Appl. Math. Mech. 12(3), 643–663 (2020). https://doi.org/10.4208/aamm.oa-2019-0079
Ma, J., Yong, J.: Forward–Backward Stochastic Differential Equations and Their Applications. Lecture Notes in Mathematics, vol. 1702. Springer-Verlag, Berlin (1999)
Ma, J., Zhang, J.: Representation theorems for backward stochastic differential equations. Ann. Appl. Probab. 12(4), 1390–1418 (2002). https://doi.org/10.1214/aoap/1037125868
Ma, J., Protter, P., Yong, J.M.: Solving forward-backward stochastic differential equations explicitly—a four step scheme. Probab. Theory Relat. Fields 98(3), 339–359 (1994). https://doi.org/10.1007/BF01192258
Ma, J., Protter, P., San Martín, J., Torres, S.: Numerical method for backward stochastic differential equations. Ann. Appl. Probab. 12(1), 302–316 (2002). https://doi.org/10.1214/aoap/1015961165
Milstein, G.N., Tretyakov, M.V.: Numerical algorithms for forward–backward stochastic differential equations. SIAM J. Sci. Comput. 28(2), 561–582 (2006). https://doi.org/10.1137/040614426
Pardoux, E., Peng, S.G.: Adapted solution of a backward stochastic differential equation. Syst. Control Lett. 14(1), 55–61 (1990). https://doi.org/10.1016/0167-6911(90)90082-6
Peng, S.G.: A general stochastic maximum principle for optimal control problems. SIAM J. Control. Optim. 28(4), 966–979 (1990). https://doi.org/10.1137/0328054
Peng, S.G.: Probabilistic interpretation for systems of quasilinear parabolic partial differential equations. Stoch. Stoch. Rep. 37(1–2), 61–74 (1991)
Rosazza Gianin, E.: Risk measures via \(g\)-expectations. Insur. Math. Econom. 39(1), 19–34 (2006). https://doi.org/10.1016/j.insmatheco.2006.01.002
Ruijter, M.J., Oosterlee, C.W.: A Fourier cosine method for an efficient computation of solutions to BSDEs. SIAM J. Sci. Comput. 37(2), A859–A889 (2015). https://doi.org/10.1137/130913183
Spiteri, R.J., Ruuth, S.J.: A new class of optimal high-order strong-stability-preserving time discretization methods. SIAM J. Numer. Anal. 40(2), 469–491 (2002). https://doi.org/10.1137/S0036142901389025
Spiteri, R.J., Ruuth, S.J.: Non-linear evolution using optimal fourth-order strong-stability-preserving Runge–Kutta methods. Math. Comput. Simul. 62(12):125–135. https://doi.org/10.1016/S0378-4754(02)00179-9 (2003)
Tang, X., Xiong, J.: Stability analysis of general multistep methods for Markovian backward stochastic differential equations. IMA J. Numer. Anal. 42(2), 1789–1805 (2022). https://doi.org/10.1093/imanum/drab023
Vanselow, R.: Nonlinear stability behaviour of linear multistep methods. BIT 23(3), 388–396 (1983). https://doi.org/10.1007/BF01934467
Wang, X., Zhao, W., Zhou, T.: Sinc-\(\theta \) schemes for backward stochastic differential equations. SIAM J. Numer. Anal. 60(4), 1799–1823 (2022). https://doi.org/10.1137/21M1444679
Yang, J., Zhao, W., Zhou, T.: A unified probabilistic discretization scheme for FBSDEs: stability, consistency, and convergence analysis. SIAM J. Numer. Anal. 58(4), 2351–2375 (2020). https://doi.org/10.1137/19M1260177
Zhang, J.: A numerical scheme for BSDEs. Ann. Appl. Probab. 14(1), 459–488 (2004). https://doi.org/10.1214/aoap/1075828058
Zhao, W., Chen, L., Peng, S.: A new kind of accurate numerical method for backward stochastic differential equations. SIAM J. Sci. Comput. 28(4), 1563–1581 (2006). https://doi.org/10.1137/05063341X
Zhao, W., Wang, J., Peng, S.: Error estimates of the \(\theta \)-scheme for backward stochastic differential equations. Discrete Contin. Dyn. Syst. Ser. B 12(4), 905–924 (2009). https://doi.org/10.3934/dcdsb.2009.12.905
Zhao, W., Zhang, G., Ju, L.: A stable multistep scheme for solving backward stochastic differential equations. SIAM J. Numer. Anal. 48(4), 1369–1394 (2010). https://doi.org/10.1137/09076979X
Zhao, W., Li, Y., Zhang, G.: A generalized \(\theta \)-scheme for solving backward stochastic differential equations. Discrete Contin. Dyn. Syst. Ser. B 17(5), 1585–1603 (2012). https://doi.org/10.3934/dcdsb.2012.17.1585
Zhao, W., Fu, Y., Zhou, T.: New kinds of high-order multistep schemes for coupled forward backward stochastic differential equations. SIAM J. Sci. Comput. 36(4), A1731–A1751 (2014). https://doi.org/10.1137/130941274
Funding
The work of the authors was partially supported by the National Natural Science Foundation of China Grants (Grant Nos. 12071261, 11822111, 11831010, 11688101, 11871068), and the National Key R &D Programs Grants (Grant Nos. 2020YFA0712000, 2018YFA0703900).
Author information
Authors and Affiliations
Corresponding author
Ethics declarations
Conflict of interest
The authors have no relevant financial or non-financial interests to disclose.
Additional information
Publisher's Note
Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
The work of the authors was partially supported by the National Natural Science Foundation of China Grants (Grant Nos. 12071261, 11822111, 11831010, 11688101, 11871068), and the National Key R &D Programs Grants (Grant Nos. 2020YFA0712000, 2018YFA0703900).
A Additional Optimal SSPM Schemes
A Additional Optimal SSPM Schemes
In Table 7, we present coefficients for optimal SSPM schemes with order upto 5.
Rights and permissions
Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.
About this article
Cite this article
Fang, S., Zhao, W. & Zhou, T. Strong Stability Preserving Multistep Schemes for Forward Backward Stochastic Differential Equations. J Sci Comput 94, 53 (2023). https://doi.org/10.1007/s10915-023-02111-x
Received:
Revised:
Accepted:
Published:
DOI: https://doi.org/10.1007/s10915-023-02111-x
Keywords
- Forward backward stochastic differential equations
- Strong stability preserving
- Linear multistep schemes
- Stability analysis
- Convergence analysis