Skip to main content
Log in

Unconditionally Energy-Stable Finite Element Scheme for the Chemotaxis-Fluid System

  • Published:
Journal of Scientific Computing Aims and scope Submit manuscript

Abstract

In this paper, we first deduce an improved chemotaxis-fluid system by introducing a chemotactic stress force, which can be used to describe the chemotactic movement of bacteria in a viscous fluid. Compared with the classical chemotaxis-Navier–Stokes system, the newly modified system obeys the law of energy dissipation. To solve such a chemotaxis-fluid system, we develop a linear, decoupled fully-discrete finite element scheme by combining the scalar auxiliary variable (SAV) approach, implicit-explicit (IMEX) scheme and pressure-projection method. The unconditional energy stability of the developed scheme is proved rigorously, and we further prove the optimal error estimates for the fully discrete scheme, especially for the pressure bound. Finally, some numerical examples are presented to verify the accuracy, energy stability and performance of the proposed numerical scheme.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

Data availibility

Enquiries about data availability should be directed to the authors.

References

  1. Bellomo, N., Bellouquid, A., Tao, Y., Winkler, M.: Toward a mathematical theory of Keller–Segel models of pattern formation in biological tissues. Math. Model Meth. Appl. Sci. 25(09), 1663–1763 (2015)

    MathSciNet  MATH  Google Scholar 

  2. Barrett, J.W., Blowey, J.F.: Finite element approximation of a nonlinear cross-diffusion population model. Numer. Math. 98(2), 195–221 (2004)

    MathSciNet  MATH  Google Scholar 

  3. Chertock, A., Fellner, K., Korganov, A., Lorz, A., Markowich, P.: Sinking, merging and stationary plumes in a coupled chemotaxis-fluid model: a high-resolution numerical approach. J. Fluid Mech. 694, 155–190 (2012)

    MathSciNet  MATH  Google Scholar 

  4. Chae, M., Kang, K., Lee, J.: Existence of smooth solutions to coupled chemotaxis-fluid equations. Discr. Cont. Dyn. Syst. A 33(6), 2271–2297 (2013)

    MathSciNet  MATH  Google Scholar 

  5. Ciarlet, P.G.: Introduction to linear shell theory, Series in applied mathematics. Elsevier, Armsterdam (1998)

    Google Scholar 

  6. Cai, X., Jiu, Q.: Weak and strong solutions for the incompressible Navier–Stokes equations with damping. J. Math. Anal. Appl. 343, 799–809 (2008)

    MathSciNet  MATH  Google Scholar 

  7. Choi, H., Shen, J.: Efficient splitting schemes for magneto-hydrodynamic equations. Sci. China Math. 59(8), 1495–1510 (2016)

    MathSciNet  MATH  Google Scholar 

  8. Deleuze, Y., Chiang, C.Y., Thiriet, M., Sheu, T.W.: Numerical study of plume patterns in a chemotaxis-diffusion-convection coupling system. Comput. Fluids 126, 58–70 (2016)

    MathSciNet  MATH  Google Scholar 

  9. Duan, R., Lorz, A., Markowich, P.A.: Global solutions to the coupled chemotaxis-fluid equations. Commun. Part. Differ. Equ. 35(9), 1635–1673 (2010)

    MathSciNet  MATH  Google Scholar 

  10. Duarte-Rodríguez, A., Rodríguez-Bellido, M.A., Rueda-Gómez, D.A., Villamizar-Roa E.J.: Numerical analysis for a chemotaxis-Navier–Stokes system, ESAIM:M2AN. 55, S417–S445 (2021)

  11. Epshteyn, Y., Izmirliouglu, A.: Fully discrete analysis of a discontinuous finite element method for the Keller–Segel chemotaxis model. J. Sci. Comput. 40(1–3), 211–256 (2009)

    MathSciNet  MATH  Google Scholar 

  12. Elliott, C.M.: Error analysis of the enthalpy method for the Stefan problem. IMA J. Numer. Anal. 7(1), 61–71 (1987)

    MathSciNet  MATH  Google Scholar 

  13. Girault, V., Raviart, P.A.: Finite Element Method for Navier–Stokes equations: theory and Algorithms. Springer, Berlin (1987)

    MATH  Google Scholar 

  14. Guillén-González, F., Rodríguez-Bellido, M.A., Rueda-Gómez. D.A.: Unconditionally energy stable fully discrete schemes for a chemo-repulsion model, Math. Comp. 88 (319), 2069–2099 (2019)

  15. Hillen, T., Painter, K.: A user’s guide to PDE models for chemotaxis. J. Math. Biol. 58(1), 183–217 (2009)

    MathSciNet  MATH  Google Scholar 

  16. Hillesdon, A.J., Pedley, T.J., Kessler, O.: The development of concentration gradients in a suspension of chemotactic bacteria. Bull. Math. Biol. 57(2), 299–344 (1995)

    MATH  Google Scholar 

  17. Heywood, J.G., Rannacher, R.: Finite element approximation of the nonstationary Navier-Stokes problem, I: regularity of solutions and second order error estimates for spatial discretization. SIAM J. Numer. Anal. 19(2), 275–311 (1982)

    MathSciNet  MATH  Google Scholar 

  18. Ivancic, F., Sheu, T.W.H., Solovchuk, M.: The free surface effect on a chemotaxis-diffusion-convection coupling system. Comput. Methods Appl. Mech. Eng. 356(1), 387–406 (2019)

    MathSciNet  MATH  Google Scholar 

  19. Ivani, F., Sheu, T.W.H., Solovchuk, M.: Bacterial chemotaxis in thin fluid layers with free surface. Phys. Fluids. 32(6), 061902 (2020)

    Google Scholar 

  20. Jong, U.K.: Smooth solutions to a quasi-linear system of diffusion equations for a certain population model. Nonlin. Anal. 8(10), 1121–1144 (1984)

    MATH  Google Scholar 

  21. Kozono, H., Miura, M., Sugiyama, Y.: Existence and uniqueness theorem on mild solutions to the Keller–Segel system coupled with the Navier–Stokes fluid. J. Funct. Anal. 270(5), 1663–1683 (2016)

    MathSciNet  MATH  Google Scholar 

  22. Karimi, A., Paul, M.: Bioconvection in spatially extend domains. Phys. Rev. E. 87(5), 053016 (2013)

    Google Scholar 

  23. Kechkar, N., Silvester, D.: Analysis of locally stabilized mixed finite element methods for the Stokes problem. Math. Comp. 58(197), 1–11 (1992)

    MathSciNet  MATH  Google Scholar 

  24. Keller, E.F., Segel, L.A.: Initiation of slime mold aggregation viewed as an instability. J. Theor. Biol. 26, 339–415 (1970)

    MathSciNet  MATH  Google Scholar 

  25. Kay, D., Silvester, D.: A posteriori error estimation for stabilized mixed approximations of the Stokes equations. SIAM J. Sci. Comput. 21(4), 1321–1336 (2000)

    MathSciNet  MATH  Google Scholar 

  26. Lee, H.G., Kim, J.: Numerical investigation of falling bacterial plumes caused by bioconvection in a three-dimensional chamber. Eur. J. Mech. B/Fluids 52, 120–130 (2015)

    MathSciNet  MATH  Google Scholar 

  27. Liu, C., Shen, J.: A phase field model for the mixture of two incompressible fluids and its approximation by a Fourier-spectral method. Physica D 179, 211–228 (2003)

    MathSciNet  MATH  Google Scholar 

  28. Li, J., Li, R., Zhao, X., Chen, Z.: A second-order fractional time-stepping method for a coupled Stokes/Darcy system. J. Comput. Appl. Math. 390, 113329 (2021)

    MathSciNet  MATH  Google Scholar 

  29. Qiu, C.X., He, X.M., Li, J., Lin, Y.P.: A domain decomposition method for the time-dependent Navier-Stokes-Darcy model with Beavers-Joseph interface condition and defective boundary condition. J. Comput. Phys. 411(15), 109400 (2020)

    MathSciNet  MATH  Google Scholar 

  30. Li, J., Wang, X., Al Mahbub, M.A., Zheng, H.B., Chen, Z.X.: Local and parallel efficient BDF2 and BDF3 rotational pressure-correction schemes for a coupled Stokes/Darcy system. J. Comput. Appl. Math. 412(1), 114326 (2022)

    MathSciNet  MATH  Google Scholar 

  31. Li, J., Yao, M., Al Mahbub, M.A., Zheng, H.B.: The efficient rotational pressure-correction schemes for the coupling Stokes/Darcy Problem. Comput. Math. Appl. 79(2), 337–353 (2020)

    MathSciNet  MATH  Google Scholar 

  32. Marrocco, A.: Numerical simulation of chemotactic bacteria aggregation via mixed finite elements. ESAIM:M2AN. 37(4), 617–630 (2003)

    MathSciNet  MATH  Google Scholar 

  33. Suphantharika, M., Ison, A.P., Lilly, M.D., Buckland, B.C.: The influence of dissolved oxygen tension on the synthesis of the antibiotic difficidin by bacillus subtilis. Biotechnol. Bioeng. 44, 1007–1012 (1994)

    Google Scholar 

  34. Shen, J., Xu, J., Yang, J.: A new class of efficient and robust energy stable schemes for gradient flows. SIAM Rev. 61(3), 474–506 (2019)

    MathSciNet  MATH  Google Scholar 

  35. Shen, J., Xu, J.: Unconditionally bound preserving and energy dissipative schemes for a class of Keller–Segel equations. SIAM J. Numer. Anal. 58(3), 1674–1695 (2020)

    MathSciNet  MATH  Google Scholar 

  36. Saito, N.: Conservative upwind finite-element method for a simplified Keller–Segel system modeling chemotaxis. IMA J. Numer. Anal. 27(2), 332–365 (2007)

    MathSciNet  MATH  Google Scholar 

  37. Strehl, R., Sokolov, A., Kuzmin, D., Horstmann, D., Turek, S.: A positivity-preserving finite element method for chemotaxis problems in 3D. J. Comput. Appl. Math. 239, 290–303 (2013)

    MathSciNet  MATH  Google Scholar 

  38. Tuval, I., Cisneros, L., Dombrowski, C., Wolgemuth, C.W., Kessler, J.O., Goldstein, R.E.: Bacterial swimming and oxygen transport near contact lines. Proc. Nat. Acad. Sci. USA 102(7), 2277–2282 (2005)

    MATH  Google Scholar 

  39. Winkler, M.: Global large-data solutions in a chemotaxis-(Navier–Stokes) system modelling cellular swimming in fluid drops. Commun. Part. Differ. Equ. 37(2), 319–351 (2012)

    MATH  Google Scholar 

  40. Winkler, M.: Stabilization in a two-dimensional chemotaxis-Navier–Stokes system. Arch. Ration. Mech. Anal. 211(2), 455–487 (2014)

    MathSciNet  MATH  Google Scholar 

  41. Wang, C., Wang, J., Xia, Z., Xu, L.: Optimal error estimates of a Crank–Nicolson finite element projection method for magnetohydrodynamic equations. ESAIM:M2AN. 56, 767–789 (2022)

    MathSciNet  MATH  Google Scholar 

  42. Wang, X., Zou, G., Wang, B.: The stabilized penalty-projection finite element method for the Navier–Stokes–Cahn–Hilliard–Oono system. Appl. Numer. Math. 165, 376–413 (2021)

    MathSciNet  MATH  Google Scholar 

  43. Yagi, A.: Global solution to some quasilinear parabolic system in population dynamics. Nonlin. Anal. 21(8), 603–630 (1993)

    MathSciNet  MATH  Google Scholar 

  44. Yang, X.: Linear, first and second-order, unconditionally energy stable numerical schemes for the phase field model of homopolymer blends. J. Comput. Phys. 327, 294–316 (2016)

    MathSciNet  MATH  Google Scholar 

  45. Yang, X., Ju, L.: Linear and unconditionally energy stable schemes for the binary fluid-surfactant phase field model. Comput. Methods Appl. Mech. Eng. 318, 1005–1029 (2017)

    MathSciNet  MATH  Google Scholar 

  46. Yang, X., Zhang, G.D., He, X.M.: Convergence analysis of an unconditionally energy stable projection scheme for magneto-hydrodynamic equations. Appl. Numer. Math. 36, 235–256 (2019)

    MathSciNet  MATH  Google Scholar 

  47. Zhang, Q., Zheng, X.: Global well-posedness for the two-dimensional incompressible chemotaxis-Navier–Stokes equations. SIAM. J. Math. Anal. 46(4), 3078–3105 (2014)

    MathSciNet  MATH  Google Scholar 

  48. Zou, G., Wang, B., Yang, X.: A fully-decoupled discontinuous Galerkin approximation of the Cahn–Hilliard–Brinkman–Ohta–Kawasaki tumor growth model. ESAIM:M2AN. 56, 2141–2180 (2022)

    MathSciNet  MATH  Google Scholar 

Download references

Acknowledgements

The authors are grateful to the reviewers for carefully reading this paper and for their comments and suggestions which have improved the paper. The work of Guang-an Zou is supported by China Postdoctoral Science Foundation (No.2019M662476), and the Key Scientific Research Projects of Colleges and Universities in Henan Province, China (23A110006). Jian Li is supported by NSF of China (No.11771259), Shaanxi Provincial Joint Laboratory of Artificial Intelligence (No.2022JC-SYS-05), Innovative team project of Shaanxi Provincial Department of Education(No.21JP013) and 2022 Shaanxi Provincial Social Science Fund Annual Project (No.2022D332).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Guang-an Zou or Jian Li.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tang, Y., Zou, Ga. & Li, J. Unconditionally Energy-Stable Finite Element Scheme for the Chemotaxis-Fluid System. J Sci Comput 95, 1 (2023). https://doi.org/10.1007/s10915-023-02118-4

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10915-023-02118-4

Keywords

Mathematics Subject Classification

Navigation