Skip to main content

Advertisement

Log in

Fully Discrete Discontinuous Galerkin Numerical Scheme with Second-Order Temporal Accuracy for the Hydrodynamically Coupled Lipid Vesicle Model

  • Published:
Journal of Scientific Computing Aims and scope Submit manuscript

Abstract

In this paper, for the highly nonlinear hydrodynamically coupled elastic bending energy model of vesicle membranes, based on the discontinuous Galerkin (DG) method for spatial discretization, a linear, decoupled, and second-order time-accurate numerical scheme is constructed. The scheme combines several efficient approaches, including the scalar auxiliary variable (SAV) method for the linearization of the nonlinear energy potential, the implicit-explicit (IMEX) discretization method for dealing with the nonlinear coupling terms, and the projection method for the Navier–Stokes equations. We also rigorously establish the energy stability and optimal error estimates, and also carry out several numerical examples to demonstrate the accuracy, stability, and efficiency of the proposed fully discrete DG scheme, numerically.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Akbas, M., Kaya, S., Rebholz, L.: On the stability at all times of linearly extrapolated BDF2 timestepping for multiphysics incompressible flow problems. Numer. Methods Partial Differ. Equ. 33(4), 999–1017 (2017)

    MathSciNet  MATH  Google Scholar 

  2. Arnold, D.N., Brezzi, F., Cockburn, B., Marini, L.D.: Unified analysis of discontinuous Galerkin methods for elliptic problems. SIAM J. Numer. Anal. 39(5), 1749–1779 (2002)

    MathSciNet  MATH  Google Scholar 

  3. Baker, G.A.: Finite element methods for elliptic equations using nonconforming elements. Math. Comp. 31, 45–59 (1977)

    MathSciNet  MATH  Google Scholar 

  4. Barthès-Biesel, D.: Motion and deformation of elastic capsules and vesicles in flow. Annu. Rev. Fluid Mech. 48(1), 25–52 (2016)

    MathSciNet  MATH  Google Scholar 

  5. Campelo, F., Cruz, A., Pérez-Gil, J., Vázquez, L., Hernández-Machado, A.: Phase-field model for the morphology of monolayer lipid domains. Eur. Phys. J. 35(6), 1–8 (2012)

    Google Scholar 

  6. Campelo, F., Hernández-Machado, A.: Shape instabilities in vesicles: a phase-field model. Eur. Phys. J. 143(1), 101–108 (2007)

    Google Scholar 

  7. Canham, P.B.: The minimum energy of bending as a possible explanation of the biconcave shape of the human red blood cell. J. Theor. Biol. 26(1), 61–81 (1970)

    Google Scholar 

  8. Chaabane, N., Girault, V., Puelz, C., Rivière, B.: Convergence of IPDG for coupled time-dependent Navier–Stokes and Darcy equations. J. Comput. Appl. Math. 324, 25–48 (2017)

    MathSciNet  MATH  Google Scholar 

  9. Chadwick, R.S.: Axisymmetric indentation of a thin incompressible elastic layer. SIAM J. Appl. Math. 62(5), 1520–1530 (2002)

    MathSciNet  MATH  Google Scholar 

  10. Chen, R., Ji, G., Yang, X., Zhang, H.: Decoupled energy stable schemes for phase-field vesicle membrane model. J. Comput. Phys. 302, 509–523 (2015)

    MathSciNet  MATH  Google Scholar 

  11. Chen, W., Liu, Q., Shen, J.: Error estimates and blow-up analysis of a finite-element approximation for the parabolic-elliptic Keller–Segel system. Int. J. Numer. Anal. Mod. 19, 275–298 (2022)

    MathSciNet  MATH  Google Scholar 

  12. Chen, W., Zhang, Y., Li, W., Wang, Y., Yan, Y.: Optimal convergence analysis of a second order scheme for a thin film model without slope selection. J. Sci. Comput. 80(3), 1716–1730 (2019)

    MathSciNet  MATH  Google Scholar 

  13. Cheng, Q., Shen, J.: Multiple scalar auxiliary variable (MSAV) approach and its application to the phase-field vesicle membrane model. SIAM J. Sci. Comput. 40(6), A3982–A4006 (2018)

    MathSciNet  MATH  Google Scholar 

  14. Cockburn, B., Kanschat, G., Schötzau, D., Schwab, C.: Local discontinuous Galerkin methods for the Stokes system. SIAM J. Numer. Anal. 40(1), 319–343 (2002)

    MathSciNet  MATH  Google Scholar 

  15. Cockburn, B., Karniadakis, G.E., Shu, C.: The Development of Discontinuous Galerkin Methods. Springer (2000)

  16. Di Pietro, D.A., Ern, A.: Discrete functional analysis tools for discontinuous Galerkin methods with application to the incompressible Navier–Stokes equations. Math. Comp. 79(271), 1303–1330 (2010)

    MathSciNet  MATH  Google Scholar 

  17. Du, Q., Li, M., Liu, C.: Analysis of a phase field Navier–Stokes vesicle-fluid interaction model. Disc. Contin. Dyn. Syst. B. 8(3), 539–556 (2007)

    MathSciNet  MATH  Google Scholar 

  18. Du, Q., Liu, C., Wang, X.: A phase field approach in the numerical study of the elastic bending energy for vesicle membranes. J. Comput. Phys. 198(2), 450–468 (2004)

    MathSciNet  MATH  Google Scholar 

  19. Du, Q., Liu, C., Wang, X.: Simulating the deformation of vesicle membranes under elastic bending energy in three dimensions. J. Comput. Phys. 212(2), 757–777 (2006)

    MathSciNet  MATH  Google Scholar 

  20. Feng, X., Karakashian, O.A.: Two-level nonoverlapping additive Schwarz methods for a discontinuous Galerkin approximation of the biharmonic problem. J. Sci. Comput. 39, 1343–1365 (2001)

    MATH  Google Scholar 

  21. Feng, X., Li, Y.: Analysis of symmetric interior penalty discontinuous Galerkin methods for the Allen-Cahn equation and the mean curvature flow. IMA J. Numer. Anal. 35(4), 1622–1651 (2015)

    MathSciNet  MATH  Google Scholar 

  22. Girault, V., Rivière, B.: DG approximation of coupled Navier–Stokes and Darcy equations by Beaver–Joseph–Saffman interface condition. SIAM J. Numer. Anal. 47(3), 2052–2089 (2009)

    MathSciNet  MATH  Google Scholar 

  23. Girault, V., Rivière, B., Wheeler, M.F.: A splitting method using discontinuous Galerkin for the transient incompressible Navier–Stokes equations. ESAIM: M2AN. 39(6), 1115–1147 (2005)

  24. Girault, V., Rivière, B., Wheeler, M.F.: A discontinuous Galerkin method with non-overlapping domain decomposition for the Stokes and Navier–Stokes problems. Math. Comp. 74(249), 53–84 (2005)

    MathSciNet  MATH  Google Scholar 

  25. Guermond, J.L., Minev, P., Shen, J.: An overview of projection methods for incompressible flows. Comput. Methods Appl. Mech. Eng. 195(44), 6011–6145 (2006)

    MathSciNet  MATH  Google Scholar 

  26. Guermond, J.L., Shen, J.: Velocity-correction projection methods for incompressible flows. SIAM J. Numer. Anal. 41(1), 112–134 (2003)

    MathSciNet  MATH  Google Scholar 

  27. Guermond, J.L., Shen, J.: On the error estimates for the rotational pressure-correction projection methods. Math. Comp. 73(248), 1719–1737 (2004)

    MathSciNet  MATH  Google Scholar 

  28. Guillén-González, F., Tierra, G.: Unconditionally energy stable numerical schemes for phase-field vesicle membrane model. J. Comput. Phys. 354, 67–85 (2018)

    MathSciNet  MATH  Google Scholar 

  29. Gu, R., Wang, X., Gunzburger, M.: A two phase field model for tracking vesicle-vesicle adhesion. J. Math. Biol. 73(5), 1293–1319 (2016)

    MathSciNet  MATH  Google Scholar 

  30. Helfrich, W.: Elastic properties of lipid bilayers: Theory and possible experiments. Z. Naturforsch. C 28(11), 693–703 (1973)

    Google Scholar 

  31. Hocine, S., Brûlet, A., Jia, L., Yang, J., Di Cicco, A., Bouteiller, L., et al.: Structural changes in liquid crystal polymer vesicles induced by temperature variation and magnetic fields. Soft Matter 7(6), 2613–2623 (2011)

    Google Scholar 

  32. Hu, Z., Wise, S.M., Wang, C., Lowengrub, J.S.: Stable and efficient finite-difference nonlinear-multigrid schemes for the phase field crystal equation. J. Comput. Phys. 228(15), 5323–5339 (2009)

    MathSciNet  MATH  Google Scholar 

  33. Kay, D., Styles, V., Süli, E.: Discontinuous Galerkin finite element approximation of the Cahn–Hilliard equation with convection. SIAM J. Numer. Anal. 47(4), 2660–2685 (2009)

    MathSciNet  MATH  Google Scholar 

  34. Kim, J.: A generalized continuous surface tension force formulation for phase-field models for multi-component immiscible fluid flows. Comput. Methods Appl. Mech. Eng. 198(37), 3105–3112 (2009)

    MathSciNet  MATH  Google Scholar 

  35. Lipowsky, R.: The morphology of lipid membranes. Curr. Opin. Struc. Biol. 5(4), 531–540 (1995)

    Google Scholar 

  36. Li, X., Shen, J.: Stability and error estimates of the SAV Fourier-spectral method for the phase field crystal equation. Adv. Comput. Math. 46(3) (2020)

  37. Liu, C., Masri, R., Rivière, B.: Convergence of a decoupled splitting scheme for the Cahn–Hilliard–Navier–Stokes system, arXiv:2210.05625 (2022)

  38. Liu, C., Rivière, B.: A priori error analysis of a discontinuous Galerkin method for Cahn–Hilliard–Navier–Stokes equations. CSIAM Trans. Appl. Math. 1(1), 104–141 (2020)

    Google Scholar 

  39. Lowengrub, J.S., Rätz, A., Voigt, A.: Phase-field modeling of the dynamics of multicomponent vesicles: Spinodal decomposition, coarsening, budding, and fission. Phys. Rev. E. 031926 (2009)

  40. Miehe, C., Hofacker, M., Welschinger, F.: A phase field model for rate-independent crack propagation: Robust algorithmic implementation based on operator splits. Comput. Method. Appl. Math. 199(45), 2765–2778 (2010)

    MathSciNet  MATH  Google Scholar 

  41. Nayanajith, P.G.H., Saha, S.C., Gu, Y.T.: Deformation properties of single red blood cell in a stenosed microchannel. In: APCOM ISCM, 11-14th December, 2013, Singapore

  42. Rivière, B.: Discontinuous Galerkin Methods for Solving Elliptic and Parabolic Equations: Theory and Implementation. SIAM, Philadelphia (2008)

    MATH  Google Scholar 

  43. Shen, J.: On error estimates of the projection methods for the Navier–Stokes equations: second-order schemes. Math. Comp. 65, 1039–1065 (1996)

    MathSciNet  MATH  Google Scholar 

  44. Shen, J., Wang, C., Wang, X., Wise, S.M.: Second-order convex splitting schemes for gradient flows with Ehrlich–Schwoebel type energy: application to thin film epitaxy. SIAM J. Numer. Anal. 50(1), 105–125 (2012)

    MathSciNet  MATH  Google Scholar 

  45. Sidhu, V.K., Vorhölter, F., Niehaus, K., Watt, S.A.: Analysis of outer membrane vesicle associated proteins isolated from the plant pathogenic bacterium Xanthomonas campestris pv. campestris. BMC Microbiol. 8(1), 87 (2008)

    Google Scholar 

  46. Wang, X., Du, Q.: Modelling and simulations of multi-component lipid membranes and open membranes via diffuse interface approaches. J. Math. Biol. 56(3), 347–371 (2008)

    MathSciNet  MATH  Google Scholar 

  47. Wang, X., Ju, L., Du, Q.: Efficient and stable exponential time differencing Runge–Kutta methods for phase field elastic bending energy models. J. Comput. Phys. 316, 21–38 (2016)

    MathSciNet  MATH  Google Scholar 

  48. Wang, C., Wang, J., Xia, Z., Xu, L.: Optimal error estimates of a Crank-Nicolson finite element projection method for magnetohydrodynamic equations. ESAIM: M2AN. 56(3), 767 (2022)

  49. Wang, X., Zou, G., Wang, B.: The stabilized penalty-projection finite element method for the Navier–Stokes–Cahn–Hilliard–Oono system. Appl. Numer. Math. 165, 376–413 (2021)

    MathSciNet  MATH  Google Scholar 

  50. Wells, G.N., Kuhl, E., Garikipati, K.: A discontinuous Galerkin method for the Cahn-Hilliard equation. J. Comput. Phys. 218(2), 860–877 (2006)

    MathSciNet  MATH  Google Scholar 

  51. Yang, X., Ju, L.: Efficient linear schemes with unconditional energy stability for the phase field elastic bending energy model. Comput. Methods Appl. Mech. Eng. 315, 691–712 (2017)

    MathSciNet  MATH  Google Scholar 

  52. Yang, X.: Numerical approximations of the Navier–Stokes equation coupled with volume-conserved multi-phase-field vesicles system: Fully-decoupled, linear, unconditionally energy stable and second-order time-accurate numerical scheme. Comput. Methods Appl. Mech. Eng. 375, 113600 (2021)

    MathSciNet  MATH  Google Scholar 

  53. Yang, X.: A novel fully-decoupled, second-order time-accurate, unconditionally energy stable scheme for a flow-coupled volume-conserved phase-field elastic bending energy model. J. Comput. Phys. 432, 110015 (2021)

    MathSciNet  MATH  Google Scholar 

  54. Yang, X.: On a novel fully-decoupled, second-order accurate energy stable numerical scheme for a binary fluid-surfactant phase-field model. SIAM J. Sci. Comput. 43, B479–B507 (2021)

    MathSciNet  MATH  Google Scholar 

  55. Yang, X.: On a novel full decoupling, Linear, Second-order accurate, and unconditionally energy stable numerical scheme for the anisotropic phase-field dendritic crystal growth model. Int. J. Numer. Meth. Eng. 122, 4129–4153 (2021)

    MathSciNet  Google Scholar 

  56. Yang, X.: Efficient linear, fully-decoupled and energy stable numerical scheme for a variable density and viscosity, volume-conserved, hydrodynamically coupled phase-field elastic bending energy model of lipid vesicles. Comput. Methods Appl. Mech. Eng. 400, 115479 (2022)

    MathSciNet  MATH  Google Scholar 

  57. Zou, G., Wang, B., Yang, X.: A fully-decoupled discontinuous Galerkin approximation of the Cahn-Hilliard-Brinkman-Ohta-Kawasaki tumor growth model. ESAIM: M2AN. 56, 2141–2180 (2022)

Download references

Acknowledgements

The authors are grateful to the reviewers for the constructive comments and valuable suggestions which have improved the paper. The work of G. Zou was partially supported by China Postdoctoral Science Foundation (2019M662476), and the Key Scientific Research Projects of Colleges and Universities in Henan Province, China (23A110006). The work of X. Yang was partially supported by National Science Foundation of USA with Grant Number DMS-2012490.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xiaofeng Yang.

Ethics declarations

Conflict of interest

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zou, Ga., Li, Z. & Yang, X. Fully Discrete Discontinuous Galerkin Numerical Scheme with Second-Order Temporal Accuracy for the Hydrodynamically Coupled Lipid Vesicle Model. J Sci Comput 95, 5 (2023). https://doi.org/10.1007/s10915-023-02129-1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10915-023-02129-1

Keywords

Mathematics Subject Classification

Navigation