Skip to main content
Log in

Stochastic Galerkin Methods for Time-Dependent Radiative Transfer Equations with Uncertain Coefficients

  • Published:
Journal of Scientific Computing Aims and scope Submit manuscript

Abstract

The generalized polynomial chaos (gPC) method is one of the most popular method for uncertainty quantification. Being essentially a spectral approach, the gPC method exhibits the spectral convergence rate which heavily depends on the regularity of the solution in the random space. Many regularity studies have been made for stochastic elliptic and parabolic equations while regularities studies of stochastic hyperbolic equations has long been infeasible due to its intrinsic difficulties. In this paper, we investigate the impact of uncertainty on the time-dependent radiative transfer equation (RTE) with nonhomogeneous boundary conditions, which sits somewhere between hyperbolic and parabolic equations. We theoretically prove the a-priori bound of the solution, its continuity with respect to the scattering coefficient, and its regularity in the random space. These studies can serve as a building block in understanding the influence of uncertainties in the passage from hyperbolic to parabolic equations. Moreover, we vigorously justify the validity of the gPC expansion ansatz based on the regularity study. Then the stochastic Galerkin method of the gPC approach is employed to discretize the random variable. We further conduct a delicate analysis to show the exponential decay rate of the gPC coefficients and establish the error estimates of the stochastic Galerkin approximation for both one-dimensional and multi-dimensional random space cases. Numerical tests are presented to verify our analytical results.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

Data Availibility

Data sharing not applicable to this article as no datasets were generated or analysed during the current study.

References

  1. Albi, G., Pareschi, L., Zanella, M.: Uncertainty quantification in control problems for flocking models. Math. Probl. Eng. 2015, 850124 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  2. Babuska, I., Nobile, F., Tempone, R.: A stochastic collocation method for elliptic partial differential equations with random input data. SIAM J. Numer. Anal. 45(3), 1005–1034 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  3. Babuska, I., Tempone, R., Zouraris, G.: Galerkin finite element approximations of stochastic elliptic partial differential equations. SIAM J. Numer. Anal. 42(2), 800–825 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  4. Branicki, M., Majda, A.J.: Fundamental limitations of polynomial chaos for uncertainty quantification in systems with intermittent instabilities. Commun. Math. Sci. 11(1), 55–103 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  5. Case, K.M., Zweifel, P.F.: Existence and uniqueness theorems for the neutron transport equation. J. Math. Phys. 4(11), 1376–1385 (1963)

    Article  MathSciNet  MATH  Google Scholar 

  6. Case, K.M., Zweifel, P.F.: Linear Transport Theory. Addison-Wesley Publishing Company, (1967)

  7. Cercignani, C.: The Boltzmann equation and its applications. Springer Science & Business Media, (2012)

  8. Chkifa, A., Cohen, A., Schwab, C.: Breaking the curse of dimensionality in sparse polynomial approximation of parametric PDEs. J. de Mathématiques Pures et Appliquées 103(2), 400–428 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  9. Cohen, A., DeVore, R., Schwab, C.: Convergence rates of best N-term Galerkin approximations for a class of elliptic sPDEs. Found. Comput. Math. 10(6), 615–646 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  10. Cohen, A., Devore, R., Schwab, C.: Analytic regularity and polynomial approximation of parametric and stochastic elliptic pde’s. Anal. Appl. 09(01), 11–47 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  11. Dautray, R., Lions, J.L.: Mathematical analysis and numerical methods for science and technology. Springer-Verlag, (1993)

  12. Després, B., Perthame, B.: Uncertainty propagation; intrusive kinetic formulations of scalar conservation laws. SIAM/ASA J. Uncertainty Quantif. 4(1), 980–1013 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  13. Dolbeault, J., Mouhot, C., Schmeiser, C.: Hypocoercivity for linear kinetic equations conserving mass. Trans. Am. Math. Soc. 367(6), 3807–3828 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  14. Egger, H., Schlottbom, M.: An \(L^p\) theory for stationary radiative transfer. Appl. Anal. 93(6), 1283–1296 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  15. Egger, H., Schlottbom, M.: A class of Galerkin schemes for time-dependent radiative transfer. SIAM J. Numer. Anal. 54(6), 3577–3599 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  16. Gamba, I.M., Jin, S., Liu, L.: Error estimate of a bifidelity method for kinetic equations with random parameters and multiple scales. Int. J. Uncertain. Quantif. 11(5), 57–75 (2021)

    Article  MathSciNet  MATH  Google Scholar 

  17. Ghanem, R.G., Spanos, P.D.: Stochastic Finite Elements: A Spectral Approach. Springer, New York (1991)

    Book  MATH  Google Scholar 

  18. Gottlieb, D., Xiu, D.: Galerkin method for wave equations with uncertain coefficients. Commun. Comput. Phys. 3(2), 505–518 (2008)

    MathSciNet  MATH  Google Scholar 

  19. Gui, W., Babuska, I.: The h, p and h-p versions of the finite element method in 1 dimension. Part 1. the error analysis of the p-version. Numerische Mathematik, 49(6):577–612, (1986)

  20. Hou, T.Y., Li, Q., Zhang, P.: Exploring the locally low dimensional structure in solving random elliptic pdes. Multiscale Model. Simul. 15(2), 661–695 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  21. Hou, T.Y., Li, Q., Zhang, P.: A sparse decomposition of low rank symmetric positive semidefinite matrices. Multiscale Model. Simul. 15(1), 410–444 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  22. Hu, J., Jin, S.: A stochastic Galerkin method for the Boltzmann equation with uncertainty. J. Comput. Phys. 315, 150–168 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  23. Jin, S., Liu, J.-G., Ma, Z.: Uniform spectral convergence of the stochastic Galerkin method for the linear transport equations with random inputs in diffusive regime and a micro-macro decomposition-based asymptotic-preserving method. Res. Math. Sci. 4(1), 15 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  24. Jin, S., Liu, L.: An asymptotic-preserving stochastic Galerkin method for the semiconductor Boltzmann equation with random inputs and diffusive scalings. Multiscale Modeling & Simulation 15(1), 157–183 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  25. Jin, S., Lu, H.: An asymptotic-preserving stochastic Galerkin method for the radiative heat transfer equations with random inputs and diffusive scalings. J. Comput. Phys. 334, 182–206 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  26. Jin, S., Lu, H., Pareschi, L.: Efficient stochastic asymptotic-preserving implicit-explicit methods for transport equations with diffusive scalings and random inputs. SIAM J. Sci. Comput. 40(2), A671–A696 (2018)

    Article  MathSciNet  MATH  Google Scholar 

  27. Jin, S., Pareschi, L. (eds.): Uncertainty Quantification for Hyperbolic and Kinetic Equations. SEMA SIMAI Springer Series, vol. 14. Springer International Publishing, Cham (2017)

  28. Jin, S., Xiu, D., Zhu, X.: Asymptotic-preserving methods for hyperbolic and transport equations with random inputs and diffusive scalings. J. Comput. Phys. 289, 35–52 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  29. Knutson, A., Tao, T.: Honeycombs and sums of hermitian matrices. Notices Am. Math. Soc. 48, (2000)

  30. Li, Q., Wang, L.: Uniform regularity for linear kinetic equations with random input based on hypocoercivity. SIAM/ASA J. Uncertain. Quantif. 5(1), 1193–1219 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  31. Loeve, M.: Probability theory I. Graduate Texts in Mathematics, vol. 45. Springer, New York, New York, NY (1977)

  32. Nobile, F., Tempone, R., Webster, C.G.: An anisotropic sparse grid stochastic collocation method for partial differential equations with random input data. SIAM J. Numer. Anal. 46(5), 2411–2442 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  33. Nobile, F., Tempone, R., Webster, C.G.: A sparse grid stochastic collocation method for partial differential equations with random input data. SIAM J. Numer. Anal. 46(5), 2309–2345 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  34. Schwab, C., Todor, R.A.: Sparse finite elements for elliptic problems with stochastic loading. Numer. Math. 95(4), 707–734 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  35. Shu, C.-W., Osher, S.: Efficient implementation of essentially non-oscillatory shock-capturing schemes. J. Comput. Phys. 77(2), 439–471 (1988)

    Article  MathSciNet  MATH  Google Scholar 

  36. Wiener, N.: The homogeneous chaos. Am. J. Math. 60(4), 897–936 (1938)

    Article  MathSciNet  MATH  Google Scholar 

  37. Xiu, D.: Generalized (Weiner-Askey) polynomial chaos. PhD thesis, Brown University, (2004)

  38. Xiu, D.: Numerical methods for stochastic computations: a spectral method approach. Princeton University Press, (2010)

  39. Xiu, D., Karniadakis, G.: The Wiener-Askey polynomial chaos for stochastic differential equations. SIAM J. Sci. Comput. 24(2), 619–644 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  40. Zhang, G., Gunzburger, M.: Error analysis of a stochastic collocation method for parabolic partial differential equations with random input data. SIAM J. Numer. Anal. 50(4), 1922–1940 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  41. Zhong, X., Li, Q.: Galerkin methods for stationary radiative transfer equations with uncertain coefficients. J. Sci. Comput. 76(2), 1105–1126 (2018)

    Article  MathSciNet  MATH  Google Scholar 

  42. Zhu, Y., Jin, S.: The Vlasov-Poisson-Fokker-Planck system with uncertainty and a one-dimensional asymptotic preserving method. Multiscale Model. Simul. 15(4), 1502–1529 (2017)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Acknowledgements

Research work of Q. Li is supported in part by NSF-CAREER-1750488 and ONR-N00014-21-1-2140. Research work of X. Zhong is supported by NSFC-11871428 and NSFC-12272347.

Funding

Author Q. Li is supported in part by NSF-CAREER-1750488 and ONR-N00014-21-1-2140. Author X. Zhong is supported in part by NSFC-11871428 and NSFC-12272347.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xinghui Zhong.

Ethics declarations

Conflict of interest

Both authors have no relevant financial or non-financial interests to disclose.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zheng, C., Qiu, J., Li, Q. et al. Stochastic Galerkin Methods for Time-Dependent Radiative Transfer Equations with Uncertain Coefficients. J Sci Comput 94, 68 (2023). https://doi.org/10.1007/s10915-023-02134-4

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10915-023-02134-4

Keywords

Mathematics Subject Classification

Navigation