Skip to main content
Log in

A Fast Sine Transform Accelerated High-Order Finite Difference Method for Parabolic Problems over Irregular Domains

  • Published:
Journal of Scientific Computing Aims and scope Submit manuscript

Abstract

In this paper, a new Cartesian grid finite difference scheme is introduced for solving parabolic initial-boundary value problems involving irregular domains and Robin boundary condition in two and three dimensions. In spatial discretization, a ray-casting matched interface and boundary (MIB) method is utilized to enforce different types of boundary conditions, including Dirichlet, Neumann, Robin, and their mixed combinations, along the normal direction to generate necessary fictitious values outside the irregular domain. This allows accurate approximations of jumps in derivatives at various boundary locations so that the fourth-order central difference can be corrected at all Cartesian nodes. By treating such corrections as additional unknowns, the order of finite difference discretization of the Laplacian operator can be preserved. Moreover, by constructing corrections for different types of irregular and corner points, the proposed augmented MIB (AMIB) method can accommodate complicated geometries, while maintaining the fourth order of accuracy in space. In temporal discretization, the standard Crank–Nicolson scheme is employed, which is second-order in time and unconditionally stable. Furthermore, a Fast Sine Transform acceleration algorithm is employed to efficiently invert the discrete Laplacian, so that the augmented linear system in each time step can be solved with a complexity of \(O(N \log N)\), where N stands for the total spatial degree-of-freedom. The accuracy, stability and efficiency of the proposed AMIB method are numerically validated by considering various parabolic problems in two and three dimensions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

Data Availability

Data sharing is not applicable to this article as no datasets were generated or analyzed during the study.

References

  1. Adams, L., Li, Z.: The immersed interface/multigrid methods for interface problems. SIAM J. Sci. Comput. 24(2), 463–479 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  2. Barrett, A., Fogelson, A.L., Griffith, B.E.: A hybrid semi-Lagrangian cut cell method for advection-diffusion problems with robin boundary conditions in moving domains. J. Comput. Phys. 449, 110805 (2022). https://doi.org/10.1016/j.jcp.2021.110805

    Article  MathSciNet  MATH  Google Scholar 

  3. Bochkov, D., Gibou, F.: Solving Poisson-type equations with robin boundary conditions on piecewise smooth interfaces. J. Comput. Phys. 376, 1156–1198 (2019). https://doi.org/10.1016/j.jcp.2018.10.020

    Article  MathSciNet  MATH  Google Scholar 

  4. Bruno, O.P.: Fast, high-order, high-frequency integral methods for computational acoustics and electromagnetics. In: Topics in Computational Wave Propagation. Springer, pp. 43–82 (2003)

  5. Bruno, O.P., Han, Y., Pohlman, M.M.: Accurate, high-order representation of complex three-dimensional surfaces via Fourier continuation analysis. J. Comput. Phys. 227(2), 1094–1125 (2007). https://doi.org/10.1016/j.jcp.2007.08.029

    Article  MathSciNet  MATH  Google Scholar 

  6. Bruno, O.P., Lyon, M.: High-order unconditionally stable FC-AD solvers for general smooth domains. I. Basic elements. J. Comput. Phys. 229(6), 2009–2033 (2010). https://doi.org/10.1016/j.jcp.2009.11.020

    Article  MathSciNet  MATH  Google Scholar 

  7. Butcher, J.C., Chartier, P., Jackiewicz, Z.: Nordsieck representation of dimsims. Numer. Algorithms 16(2), 209–230 (1997). https://doi.org/10.1023/A:1019195215402

    Article  MathSciNet  MATH  Google Scholar 

  8. Chai, M., Luo, K., Shao, C., Wang, H., Fan, J.: A finite difference discretization method for heat and mass transfer with robin boundary conditions on irregular domains. J. Comput. Phys. 400, 108890 (2020). https://doi.org/10.1016/j.jcp.2019.108890

    Article  MathSciNet  MATH  Google Scholar 

  9. Chai, M., Luo, K., Wang, H., Zheng, S., Fan, J.: Imposing mixed Dirichlet–Neumann–Robin boundary conditions on irregular domains in a level set/ghost fluid based finite difference framework. Comput. Fluids 214, 104772 (2021). https://doi.org/10.1016/j.compfluid.2020.104772

    Article  MathSciNet  MATH  Google Scholar 

  10. Chen, H., Min, C., Gibou, F.: A supra-convergent finite difference scheme for the Poisson and heat equations on irregular domains and non-graded adaptive cartesian grids. J. Sci. Comput. 31(1), 19–60 (2007). https://doi.org/10.1007/s10915-006-9122-8

    Article  MathSciNet  MATH  Google Scholar 

  11. Chen, Z., Zou, J.: Finite element methods and their convergence for elliptic and parabolic interface problems. Numer. Math. 79(2), 175–202 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  12. Clain, S., Lopes, D., Pereira, R.: Very high-order cartesian-grid finite difference method on arbitrary geometries. J. Comput. Phys. 434, 110217 (2021). https://doi.org/10.1016/j.jcp.2021.110217

    Article  MathSciNet  MATH  Google Scholar 

  13. Coco, A., Russo, G.: Second order finite-difference ghost-point multigrid methods for elliptic problems with discontinuous coefficients on an arbitrary interface. J. Comput. Phys. 361, 299–330 (2018). https://doi.org/10.1016/j.jcp.2018.01.016

    Article  MathSciNet  MATH  Google Scholar 

  14. Coco, A., Semplice, M., Serra Capizzano, S.: A level-set multigrid technique for nonlinear diffusion in the numerical simulation of marble degradation under chemical pollutants. Appl. Math. Comput. 386, 125503 (2020). https://doi.org/10.1016/j.amc.2020.125503

    Article  MathSciNet  MATH  Google Scholar 

  15. Douglas, J., Jr., Peaceman, D.W.: Numerical solution of two-dimensional heat-flow problems. AIChE J. 1(4), 505–512 (1955)

    Article  Google Scholar 

  16. D’Ambrosio, R., De Martino, G., Paternoster, B.: General Nyström methods in Nordsieck form: error analysis. J. Comput. Appl. Math. 292, 694–702 (2016). https://doi.org/10.1016/j.cam.2015.04.041

    Article  MathSciNet  MATH  Google Scholar 

  17. Fedkiw, R.P., Aslam, T., Merriman, B., Osher, S.: A non-oscillatory Eulerian approach to interfaces in multimaterial flows (the ghost fluid method). J. Comput. Phys. 152(2), 457–492 (1999). https://doi.org/10.1006/jcph.1999.6236

    Article  MathSciNet  MATH  Google Scholar 

  18. Feng, H., Long, G., Zhao, S.: An augmented matched interface and boundary (MIB) method for solving elliptic interface problem. J. Comput. Appl. Math. 361, 426–443 (2019)

    Article  MathSciNet  MATH  Google Scholar 

  19. Feng, H., Long, G., Zhao, S.: FFT-based high order central difference schemes for Poisson’s equation with staggered boundaries. J. Sci. Comput. 86(1), 1–25 (2021)

    Article  MathSciNet  MATH  Google Scholar 

  20. Feng, H., Zhao, S.: FFT-based high order central difference schemes for three-dimensional Poisson’s equation with various types of boundary conditions. J. Comput. Phys. 410, 109391 (2020)

    Article  MathSciNet  MATH  Google Scholar 

  21. Feng, H., Zhao, S.: A fourth order finite difference method for solving elliptic interface problems with the FFT acceleration. J. Comput. Phys. 419, 109677 (2020)

    Article  MathSciNet  MATH  Google Scholar 

  22. Feng, H., Zhao, S.: A multigrid based finite difference method for solving parabolic interface problem. Electron. Res. Arch. 29(5), 3141 (2021)

    Article  MathSciNet  MATH  Google Scholar 

  23. Fernández-Fidalgo, J., Clain, S., Ramírez, L., Colominas, I., Nogueira, X.: Very high-order method on immersed curved domains for finite difference schemes with regular cartesian grids. Comput. Methods Appl. Mech. Eng. 360, 112782 (2020). https://doi.org/10.1016/j.cma.2019.112782

    Article  MathSciNet  MATH  Google Scholar 

  24. Fornberg, B.: Classroom note: calculation of weights in finite difference formulas. SIAM Rev. 40(3), 685–691 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  25. Gibou, F., Fedkiw, R.: A fourth order accurate discretization for the Laplace and heat equations on arbitrary domains, with applications to the Stefan problem. J. Comput. Phys. 202(2), 577–601 (2005). https://doi.org/10.1016/j.jcp.2004.07.018

    Article  MathSciNet  MATH  Google Scholar 

  26. Gibou, F., Min, C., Fedkiw, R.: High resolution sharp computational methods for elliptic and parabolic problems in complex geometries. J. Sci. Comput. 54(2), 369–413 (2013). https://doi.org/10.1007/s10915-012-9660-1

    Article  MathSciNet  MATH  Google Scholar 

  27. Li, C., Long, G., Li, Y., Zhao, S.: Alternating direction implicit (ADI) methods for solving two-dimensional parabolic interface problems with variable coefficients. Computation 9(7), 79 (2021). https://doi.org/10.3390/computation9070079

    Article  Google Scholar 

  28. Li, C., Wei, Z., Long, G., Campbell, C., Ashlyn, S., Zhao, S.: Alternating direction ghost-fluid methods for solving the heat equation with interfaces. Comput. Math. Appl. 80(5), 714–732 (2020)

    MathSciNet  MATH  Google Scholar 

  29. Li, C., Zhao, S.: A matched Peaceman–Rachford ADI method for solving parabolic interface problems. Appl. Math. Comput. 299, 28–44 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  30. Li, Z., Chen, X., Zhang, Z.: On multiscale ADI methods for parabolic PDEs with a discontinuous coefficient. SIAM Multiscale Model. Simul. 16(4), 1623–1647 (2018)

    Article  MathSciNet  MATH  Google Scholar 

  31. Li, Z., Mayo, A.: Adi methods for heat equations with discontinuous along an arbitrary interface. In: Proceedings of Symposia in Applied Mathematics, vol. 48, pp. 311–315 (1993)

  32. Lin, T., Yang, Q., Zhang, X.: Partially penalized immersed finite element methods for parabolic interface problems. Numer. Methods Partial Differ. Equ. 31(6), 1925–1947 (2015). https://doi.org/10.1002/num.21973

    Article  MathSciNet  MATH  Google Scholar 

  33. Lyon, M., Bruno, O.P.: High-order unconditionally stable fc-ad solvers for general smooth domains II. Elliptic, parabolic and hyperbolic PDEs; theoretical considerations. J. Comput. Phys. 229(9), 3358–3381 (2010). https://doi.org/10.1016/j.jcp.2010.01.006

    Article  MathSciNet  MATH  Google Scholar 

  34. Marques, A.N., Nave, J.C., Rosales, R.R.: A correction function method for Poisson problems with interface jump conditions. J. Comput. Phys. 230(20), 7567–7597 (2011). https://doi.org/10.1016/j.jcp.2011.06.014

    Article  MathSciNet  MATH  Google Scholar 

  35. Pan, K., Wu, X., Hu, H., Yu, Y., Li, Z.: A new FV scheme and fast cell-centered multigrid solver for 3D anisotropic diffusion equations with discontinuous coefficients. J. Comput. Phys. 449, 110794 (2022). https://doi.org/10.1016/j.jcp.2021.110794

    Article  MathSciNet  MATH  Google Scholar 

  36. Papac, J., Gibou, F., Ratsch, C.: Efficient symmetric discretization for the Poisson, heat and Stefan-type problems with robin boundary conditions. J. Comput. Phys. 229(3), 875–889 (2010). https://doi.org/10.1016/j.jcp.2009.10.017

    Article  MathSciNet  MATH  Google Scholar 

  37. Ren, Y., Feng, H., Zhao, S.: A FFT accelerated high order finite difference method for elliptic boundary value problems over irregular domains. J. Comput. Phys. 448, 110762 (2022)

    Article  MathSciNet  MATH  Google Scholar 

  38. Song, L., Zhao, S.: Symmetric interior penalty Galerkin approaches for two-dimensional parabolic interface problems with low regularity solutions. J. Comput. Appl. Math. 330, 356–379 (2018). https://doi.org/10.1016/j.cam.2017.09.018

    Article  MathSciNet  MATH  Google Scholar 

  39. Stein, D.B., Guy, R.D., Thomases, B.: Immersed boundary smooth extension: a high-order method for solving PDE on arbitrary smooth domains using Fourier spectral methods. J. Comput. Phys. 304, 252–274 (2016). https://doi.org/10.1016/j.jcp.2015.10.023

    Article  MathSciNet  MATH  Google Scholar 

  40. Vauthier, C., Tsapis, N., Couvreur, P.: Nanoparticles: heating tumors to death? Nanomedicine 6(1), 99–109 (2011)

    Article  Google Scholar 

  41. Wan, J.W.L., Liu, X.D.: A boundary condition-capturing multigrid approach to irregular boundary problems. SIAM J. Sci. Comput. 25(6), 1982–2003 (2004). https://doi.org/10.1137/S1064827503428540

    Article  MathSciNet  MATH  Google Scholar 

  42. Wei, Z., Li, C., Zhao, S.: A spatially second order alternating direction implicit (ADI) method for solving three dimensional parabolic interface problems. Comput. Math. Appl. 75, 2173–2192 (2018)

    MathSciNet  MATH  Google Scholar 

  43. Wiegmann, A., Bube, K.P.: The explicit-jump immersed interface method: finite difference methods for PDEs with piecewise smooth solutions. SIAM J. Numer. Anal. 37(3), 827–862 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  44. Xie, Y., Ying, W.: A fourth-order kernel-free boundary integral method for the modified Helmholtz equation. J. Sci. Comput. 78(3), 1632–1658 (2019). https://doi.org/10.1007/s10915-018-0821-8

    Article  MathSciNet  MATH  Google Scholar 

  45. Yang, Q., Zhang, X.: Discontinuous Galerkin immersed finite element methods for parabolic interface problems. J. Comput. Appl. Math. 299, 127–139 (2016). https://doi.org/10.1016/j.cam.2015.11.020. (Recent advances in numerical methods for systems of partial differential equations)

  46. Yu, S., Zhou, Y., Wei, G.: Matched interface and boundary (MIB) method for elliptic problems with sharp-edged interfaces. J. Comput. Phys. 224(2), 729–756 (2007). https://doi.org/10.1016/j.jcp.2006.10.030

    Article  MathSciNet  MATH  Google Scholar 

  47. Zhao, S.: A fourth order finite difference method for waveguides with curved perfectly conducting boundaries. Comput. Methods Appl. Mech. Eng. 199(41–44), 2655–2662 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  48. Zhao, S.: A matched alternating direction implicit (ADI) method for solving the heat equation with interfaces. J. Sci. Comput. 63(1), 118–137 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  49. Zhao, S., Wei, G.: High-order FDTD methods via derivative matching for Maxwell’s equations with material interfaces. J. Comput. Phys. 200(1), 60–103 (2004). https://doi.org/10.1016/j.jcp.2004.03.008

    Article  MathSciNet  MATH  Google Scholar 

  50. Zhao, S., Wei, G.: Matched interface and boundary (MIB) for the implementation of boundary conditions in high-order central finite differences. Int. J. Numer. Methods Eng. 77(12), 1690–1730 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  51. Zhou, Y., Zhao, S., Feig, M., Wei, G.: High order matched interface and boundary method for elliptic equations with discontinuous coefficients and singular sources. J. Comput. Phys. 213(1), 1–30 (2006). https://doi.org/10.1016/j.jcp.2005.07.022

    Article  MathSciNet  MATH  Google Scholar 

  52. Zhu, P., Zhang, Q., Liu, T.: Stable generalized finite element method (SGFEM) for parabolic interface problems. J. Comput. Appl. Math. 367, 112475 (2020). https://doi.org/10.1016/j.cam.2019.112475

    Article  MathSciNet  MATH  Google Scholar 

Download references

Acknowledgements

The research of Long was supported in part by the Natural Science Foundation of Guangxi in China under grant AD20238065, and the key project of Guangxi Provincial Natural Science Foundation of China under grant 2018GXNSFDA050014. The research of Boerman was supported in part by the grant of Research in Mathematics and the Sciences (RIMS) offered by the College of the Sciences and Mathematics at West Chester University of Pennsylvania, USA. The research of Zhao was supported in part by the National Science Foundation (NSF) grant DMS-2110914.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shan Zhao.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, C., Ren, Y., Long, G. et al. A Fast Sine Transform Accelerated High-Order Finite Difference Method for Parabolic Problems over Irregular Domains. J Sci Comput 95, 49 (2023). https://doi.org/10.1007/s10915-023-02177-7

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10915-023-02177-7

Keywords

Mathematics Subject Classification

Navigation