Skip to main content
Log in

Analysis of a Fourier–Galerkin Method for the Transmission Eigenvalue Problem based on a Boundary Integral Formulation

  • Published:
Journal of Scientific Computing Aims and scope Submit manuscript

Abstract

We consider the computation of the transmission eigenvalue problem based on a boundary integral formulation. The problem is formulated as the eigenvalue problem of a holomorphic Fredholm operator function. A Fourier–Galerkin method is proposed for the integral equations. The approximation properties of the associated discrete operators are analyzed and some convergence results of the eigenvalues are obtained. We present the details of the implementation and employ the spectral projection method to compute the eigenvalues. Numerical examples validate the effectiveness and accuracy of the proposed method.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

We’re sorry, something doesn't seem to be working properly.

Please try refreshing the page. If that doesn't work, please contact support so we can address the problem.

Data availibility

This manuscript has no associated data.

References

  1. An, J., Shen, J.: A Fourier-spectral-element method for transmission eigenvalue problems. J. Sci. Comput. 57(3), 670–688 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  2. Beyn, W.-J., Latushkin, Y., Rottmann-Matthes, J.: Finding eigenvalues of holomorphic Fredholm operator pencils using boundary value problems and contour integrals. Integral Equ. Oper. Theory 78(2), 155–211 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  3. Cakoni, F., Kress, R.: A boundary integral equation method for the transmission eigenvalue problem. Appl. Anal. 96, 23–38 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  4. Cakoni, F., Monk, P., Sun, J.: Error analysis for the finite element approximation of transmission eigenvalues. Comput. Methods Appl. Math. 14(4), 419–427 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  5. Colton, D., Kress, R.: Inverse Acoustic and Electromagnetic Scattering Theory, 4th edn. Springer, Cham (2019)

    Book  MATH  Google Scholar 

  6. Colton, D., Monk, P., Sun, J.: Analytical and computational methods for transmission eigenvalues. Inverse Probl. 26 (2010) No. 4, 045011

  7. Cossonnière, A., Haddar, H.: Surface integral formulation of the interior transmission problem. J. Integral Equ. Appl. 25, 341–376 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  8. Gong, B., Sun, J., Turner, T., Zheng, C.: Finite element/holomorphic operator function method for the transmission eigenvalue problem. Math. Comput. 91(338), 2113–2139 (2022)

    MathSciNet  MATH  Google Scholar 

  9. Huang, R., Struthers, A., Sun, J., Zhang, R.: Recursive integral method for transmission eigenvalues. J. Comput. Phys. 327, 830–840 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  10. Huang, R., Sun, J., Yang, C.: Recursive integral method with Cayley transformation. Numer. Linear Algebra Appl. 25(6), e2199 (2018). https://doi.org/10.1002/nla.2199

    Article  MathSciNet  MATH  Google Scholar 

  11. Karma, O.: Approximation in eigenvalue problems for holomorphic Fredholm operator functions. I. Numer. Funct. Anal. Optim. 17(3–4), 365–387 (1996)

    Article  MathSciNet  MATH  Google Scholar 

  12. Kleefeld, A.: A numerical method to compute interior transmission eigenvalues. Inverse Probl. 29(10), 104012 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  13. Kleefeld, A., Pieronek, L.: The method of fundamental solutions for computing acoustic interior transmission eigenvalues. Inverse Probl. 34(3), 035007 (2018)

    Article  MathSciNet  MATH  Google Scholar 

  14. Kress, R.: Linear Integral Equations. Springer, New York (1989)

    Book  MATH  Google Scholar 

  15. Kress, R.: A Nyström method for boundary integral equations in domains with corners. Numer. Math. 58(2), 145–161 (1990)

    Article  MathSciNet  MATH  Google Scholar 

  16. Li, T., Huang, W., Lin, W.W., Liu, J.: On spectral analysis and a novel algorithm for transmission eigenvalue problems. J. Sci. Comput. 64(1), 83–108 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  17. McLean, W.: Strongly Elliptic Systems and Boundary Integral Equations. Cambridge University Press, Cambridge (2000)

    MATH  Google Scholar 

  18. Mora, D., Velásquez, I.: A virtual element method for the transmission eigenvalue problem. Math. Models Methods Appl. Sci. 28(14), 2803–2831 (2018)

    Article  MathSciNet  MATH  Google Scholar 

  19. Pang, X., Sun, J., Zhang, Z.: FE-holomorphic operator function method for nonlinear plate vibrations with elastically added masses. J. Comput. Appl. Math. 410, 114156 (2022)

    Article  MathSciNet  MATH  Google Scholar 

  20. Steinbach, O., Unger, G.: A boundary element method for the Dirichlet eigenvalue problem of the Laplace operator. Numer. Math. 113(2), 281–298 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  21. Sun, J.: Iterative methods for transmission eigenvalues. SIAM J. Numer. Anal. 49(5), 1860–1874 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  22. Sun, J., Zhou, A.: Finite Element Methods for Eigenvalue Problems. CRC Press, Boca Raton (2016)

    Book  Google Scholar 

  23. Xiao, W., Gong, B., Sun, J., Zhang, Z.: Finite element calculation of photonic band structures for frequency dependent materials. J. Sci. Comput. 87(1), 16 (2021)

    Article  MathSciNet  MATH  Google Scholar 

  24. Xie, H., Wu, X.: A multilevel correction method for interior transmission eigenvalue problem. J. Sci. Comput. 72(2), 586–604 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  25. Yang, Y., Han, J., Bi, H.: Non-conforming finite element methods for transmission eigenvalue problem. Comput. Methods Appl. Mech. Eng. 307, 144–163 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  26. Yang, Y., Bi, H., Li, H., Han, J.: Mixed methods for the Helmholtz transmission eigenvalues. SIAM J. Sci. Comput. 38(3), A1383–A1403 (2016)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Funding

The research of Y. Ma was supported by the NSFC under Grant No. 11901085. The research of J. Sun was partially supported by Simons Foundation under Grant No. 711922.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jiguang Sun.

Ethics declarations

Conflict of interest

The authors have no relevant financial or non-financial interests to disclose.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ma, Y., Sun, J. Analysis of a Fourier–Galerkin Method for the Transmission Eigenvalue Problem based on a Boundary Integral Formulation. J Sci Comput 95, 60 (2023). https://doi.org/10.1007/s10915-023-02197-3

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10915-023-02197-3

Keywords