Skip to main content
Log in

A Conforming Virtual Element Method Based on Unfitted Meshes for the Elliptic Interface Problem

  • Published:
Journal of Scientific Computing Aims and scope Submit manuscript

Abstract

In this paper, we propose a conforming virtual element method based on an unfitted mesh to solve the elliptic interface problem in two dimensions. The intersecting points of the interface and the edges of triangles are considered as additional nodes of the mesh. Thus each interface triangle is regarded as a polygon with more than three vertices. On each interface polygon, we introduce a virtual element satisfying the interface conditions. On each non-interface triangle, we use the usual linear element. Based on a computable projection-like operator, we introduce our discrete scheme. Both the approximation and consistency errors are analyzed rigorously and all the hidden constants do not depend on how the interface intersects with the meshes. The error between the exact and discrete solution is shown to decrease linear with regard to the mesh size. Some numerical experiments are provided to verify the theoretical results.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Data Availability

The datasets generated during and/or analysed during the current study are available from the corresponding author on reasonable request.

References

  1. Beirão da Veiga, L., Brezzi, F., Dassi, F., Marini, L.D., Russo, A.: A family of three-dimensional virtual elements with applications to magnetostatics. SIAM J. Numer. Anal. 56(5), 2940–2962 (2018)

    MathSciNet  MATH  Google Scholar 

  2. Beirão da Veiga, L., Brezzi, F., Marini, L.D., Russo, A.: The hitchhiker’s guide to the virtual element method. Math. Models Methods Appl. Sci. 24(08), 1541–1573 (2014)

    MathSciNet  MATH  Google Scholar 

  3. Beirão da Veiga, L., Brezzi, F., Marini, L.D., Russo, A.: Virtual element method for general second-order elliptic problems on polygonal meshes. Math. Models Methods Appl. Sci. 26(04), 729–750 (2016)

    MathSciNet  MATH  Google Scholar 

  4. Beirão da Veiga, L., Brezzi, F., Marini, L.D., Russo, A.: Polynomial preserving virtual elements with curved edges. Math. Models Methods Appl. Sci. 30(08), 1555–1590 (2020)

    MathSciNet  MATH  Google Scholar 

  5. Beirão da Veiga, L., Lovadina, C., Russo, A.: Stability analysis for the virtual element method. Math. Models Methods Appl. Sci. 27(13), 2557–2594 (2017)

    MathSciNet  MATH  Google Scholar 

  6. Beirão da Veiga, L., Brezzi, F., Cangiani, A., Manzini, G., Marini, L.D., Russo, A.: Basic principles of virtual element methods. Math. Models Methods Appl. Sci. 23(1), 199–214 (2013)

    MathSciNet  MATH  Google Scholar 

  7. Beirão da Veiga, L., Liu, Y., Mascotto, L., Russo A.: The nonconforming virtual element method with curved edges. (2023) arXiv preprint arXiv:2303.15204

  8. Beirão da Veiga, L., Lovadina, C., Vacca, G.: Divergence free virtual elements for the Stokes problem on polygonal meshes. ESAIM Math. Modell. Numer. Anal. 51(2), 509–535 (2017)

    MathSciNet  MATH  Google Scholar 

  9. Beirão da Veiga, L., Russo, A., Vacca, G.: The virtual element method with curved edges. ESAIM Math. Modell. Numer. Anal., 53(2):375–404 (2019)

  10. Bertsekas, D. P., Nedić, A., Ozdaglar, A. E.: Convex analysis and optimization, volume 1. Athena Sci. (2003)

  11. Bramble, J.H., King, J.T.: A finite element method for interface problems in domains with smooth boundaries and interfaces. Adv. Comput. Math. 6, 109–138 (1996)

    MathSciNet  MATH  Google Scholar 

  12. Brenner, S.C., Sung, L.-Y.: Virtual element methods on meshes with small edges or faces. Math. Models Methods Appl. Sci. 28(07), 1291–1336 (2018)

    MathSciNet  MATH  Google Scholar 

  13. Burman, E., Ern, A.: An unfitted hybrid high-order method for elliptic interface problems. SIAM J. Numer. Anal. 56(3), 1525–1546 (2018)

    MathSciNet  MATH  Google Scholar 

  14. Burman, E., Zunino, P.: Numerical approximation of large contrast problems with the unfitted Nitsche method. In: Frontiers in Numerical Analysis-Durham 2010, pp. 227–282. Springer (2011)

  15. Cao, S.H., Chen, L.: Anisotropic error estimates of the linear virtual element method on polygonal meshes. SIAM J. Numer. Anal. 56(5), 2913–2939 (2018)

    MathSciNet  MATH  Google Scholar 

  16. Cao, S.H., Chen, L.: Anisotropic error estimates of the linear nonconforming virtual element methods. SIAM J. Numer. Anal. 57(3), 1058–1081 (2019)

    MathSciNet  MATH  Google Scholar 

  17. Cao, S.H., Chen, L., Guo, R.C.: A virtual finite element method for two-dimensional Maxwell interface problems with a background unfitted mesh. Math. Models Methods Appl. Sci. 31(14), 2907–2936 (2021)

    MathSciNet  MATH  Google Scholar 

  18. Cao, S.H., Chen, L., Guo, R.C.: Immersed virtual element methods for electromagnetic interface problems in three dimensions. Math. Models Methods Appl. Sci. 33(03), 455–503 (2023)

    MathSciNet  Google Scholar 

  19. Cao, S.H., Chen, L., Guo, R.C., Lin, F.: Immersed virtual element methods for elliptic interface problems in two dimensions. J. Sci. Comput. 93(1), 1–41 (2022)

    MathSciNet  MATH  Google Scholar 

  20. Chen, L.: \(i\)FEM: an integrated finite element method package in MATLAB. Technical Report, University of California at Irvine (2009)

  21. Chen, L., Huang, J.G.: Some error analysis on virtual element methods. Calcolo 55(1), 1–23 (2018)

    MathSciNet  MATH  Google Scholar 

  22. Chen, L., Wei, H.Y., Wen, M.: An interface-fitted mesh generator and virtual element methods for elliptic interface problems. J. Comput. Phys. 334(1), 327–348 (2017)

    MathSciNet  MATH  Google Scholar 

  23. Chen, Z.M., Du, Q., Zou, J.: Finite element methods with matching and nonmatching meshes for Maxwell equations with discontinuous coefficients. SIAM J. Numer. Anal. 37(5), 1542–1570 (2000)

    MathSciNet  MATH  Google Scholar 

  24. Chen, Z.M., Zou, J.: Finite element methods and their convergence for elliptic and parabolic interface problems. Numer. Math. 79(2), 175–202 (1998)

    MathSciNet  MATH  Google Scholar 

  25. Dassi, F., Fumagalli, A., Losapio, D., Scialò, S., Scotti, A., Vacca, G.: The mixed virtual element method on curved edges in two dimensions. Comput. Methods Appl. Mech. Eng. 386, 114098 (2021)

    MathSciNet  MATH  Google Scholar 

  26. Dassi, F., Lovadina, C., Visinoni, M.: A three-dimensional hellinger-reissner virtual element method for linear elasticity problems. Comput. Methods Appl. Mech. Eng. 364, 112910 (2020)

    MathSciNet  MATH  Google Scholar 

  27. Dong, H.X., Wang, B., Xie, Z.Q., Wang, L.-L.: An unfitted hybridizable discontinuous Galerkin method for the Poisson interface problem and its error analysis. IMA J. Numer. Anal. 37(1), 444–476 (2017)

    MathSciNet  MATH  Google Scholar 

  28. Dong, H.X., Ying, W.J., Zhang, J.W.: A hybridizable discontinuous Galerkin method for elliptic interface problems in the formulation of boundary integral equations. J. Comput. Appl. Math. 344, 624–639 (2018)

    MathSciNet  MATH  Google Scholar 

  29. Durán, R.G.: Error estimates for anisotropic finite elements and applications. Proc. Int. Congr. Math. III, 1181–1200 (2006)

    MathSciNet  MATH  Google Scholar 

  30. Gross, S., Reusken, A.: Numerical methods for two-phase incompressible flows. vol. 40. Springer Science & Business Media (2011)

  31. Guo, R.C., Lin, T.: A group of immersed finite-element spaces for elliptic interface problems. IMA J. Numer. Anal. 39(1), 482–511 (2019)

    MathSciNet  MATH  Google Scholar 

  32. Guo, R.C., Lin, T.: An immersed finite element method for elliptic interface problems in three dimensions. J. Comput. Phys. 414, 109478 (2020)

    MathSciNet  MATH  Google Scholar 

  33. Guo, R.C., Lin, T., Zhang, X.: Nonconforming immersed finite element spaces for elliptic interface problems. Comput. Math. Appl. 75(6), 2002–2016 (2018)

    MathSciNet  MATH  Google Scholar 

  34. Guo, R.C., Zhang, X.: Solving three-dimensional interface problems with immersed finite elements: A-priori error analysis. J. Comput. Phys. 441, 110445 (2021)

    MathSciNet  MATH  Google Scholar 

  35. Guzmán, J., Sánchez, M.A., Sarkis, M.: A finite element method for high-contrast interface problems with error estimates independent of contrast. J. Sci. Comput. 73(1), 330–365 (2017)

    MathSciNet  MATH  Google Scholar 

  36. Han, Y.H., Chen, H.X., Wang, X.-P., Xie, X.P.: Extended HDG methods for second order elliptic interface problems. J. Sci. Comput. 84(1), 1–29 (2020)

    MathSciNet  MATH  Google Scholar 

  37. Hansbo, A., Hansbo, P.: An unfitted finite element method, based on Nitsche’s method, for elliptic interface problems. Comput. Methods Appl. Mech. Eng. 191(47), 5537–5552 (2002)

    MathSciNet  MATH  Google Scholar 

  38. Hansbo, P., Larson, M.G., Zahedi, S.: A cut finite element method for a Stokes interface problem. Appl. Numer. Math. 85, 90–114 (2014)

    MathSciNet  MATH  Google Scholar 

  39. He, X.M., Lin, T., Lin, Y.P.: Approximation capability of a bilinear immersed finite element space. Numer. Methods Partial Differ. Equ. 24(5), 1265–1300 (2008)

    MathSciNet  MATH  Google Scholar 

  40. Huang, J.G., Zou, J.: Uniform a priori estimates for elliptic and static Maxwell interface problems. Discret. Contin. Dyn. Syst. B 7(1), 145 (2007)

    MathSciNet  MATH  Google Scholar 

  41. Huang, P.Q., Wu, H.J., Xiao, Y.M.: An unfitted interface penalty finite element method for elliptic interface problems. Comput. Methods Appl. Mech. Eng. 323, 439–460 (2017)

    MathSciNet  MATH  Google Scholar 

  42. Lehrenfeld, C., Reusken, A.: Analysis of a high-order unfitted finite element method for elliptic interface problems. IMA J. Numer. Anal. 38(3), 1351–1387 (2017)

    MathSciNet  MATH  Google Scholar 

  43. Lehrenfeld, C., Reusken, A.: \({L}^2\)-error analysis of an isoparametric unfitted finite element method for elliptic interface problems. J. Numer. Math. 27(2), 85–99 (2019)

    MathSciNet  MATH  Google Scholar 

  44. Li, J.Z., Melenk, J.M., Wohlmuth, B., Zou, J.: Optimal a priori estimates for higher order finite elements for elliptic interface problems. Appl. Numer. Math. 60(1), 19–37 (2010)

    MathSciNet  MATH  Google Scholar 

  45. Li, R., Yang, F.Y.: A discontinuous Galerkin method by patch reconstruction for elliptic interface problem on unfitted mesh. SIAM J. Sci. Comput. 42(2), A1428–A1457 (2020)

    MathSciNet  MATH  Google Scholar 

  46. Li, Z.L.: The immersed interface method using a finite element formulation. Appl. Numer. Math. 27(3), 253–267 (1998)

    MathSciNet  MATH  Google Scholar 

  47. Li, Z.L., Lin, T., Wu, X.H.: New Cartesian grid methods for interface problems using the finite element formulation. Numer. Math. 96(1), 61–98 (2003)

    MathSciNet  MATH  Google Scholar 

  48. Mengolini, M., Benedetto, M.F., Aragón, A.M.: An engineering perspective to the virtual element method and its interplay with the standard finite element method. Comput. Methods Appl. Mech. Eng. 350, 995–1023 (2019)

    MathSciNet  MATH  Google Scholar 

  49. Mikelić, A., Wheeler, M.F.: On the interface law between a deformable porous medium containing a viscous fluid and an elastic body. Math. Models Methods Appl. Sci. 22(11), 1250031 (2012)

    MathSciNet  MATH  Google Scholar 

  50. Tartar, L.: An introduction to Sobolev spaces and interpolation spaces. vol. 3. Springer Science & Business Media (2007)

  51. Wang, S.H., Wang, F., Xu, X.J.: A robust multigrid method for one dimensional immersed finite element method. Numer. Methods Partial Differ. Equ. 37(3), 2244–2260 (2021)

    MathSciNet  Google Scholar 

  52. Wu, H.J., Xiao, Y.M.: An unfitted \(hp\)-interface penalty finite element method for elliptic interface problems. J. Comput. Math. 37(3), 316–339 (2018)

    MathSciNet  MATH  Google Scholar 

  53. Xiao, Y.M., Xu, J.C., Wang, F.: High-order extended finite element methods for solving interface problems. Comput. Methods Appl. Mech. Eng. 364, 112964 (2020)

    MathSciNet  MATH  Google Scholar 

  54. Xu, J.C.: Estimate of the convergence rate of finite element solutions to elliptic equations of second order with discontinuous coefficients. Nat. Sci. J. Xiangtan Univ. 1, 1–5 (1982)

    Google Scholar 

Download references

Acknowledgements

We would like to thank the referees for many valuables comments and suggestions, which lead to a significantly improved presentation of this paper. F. Wang is partially supported by the National Natural Science Foundation of China (Grant No. 12071227), the Natural Science Foundation of the Jiangsu Higher Education Institutions of China (Grant No. 20KJA110001) and the National Key Research and Development Program of China (No. 2020YFA0713803); J. Chen is partially supported by the National Natural Science Foundation of China (Grant No. 11871281, 11731007); H. Ji is partially supported by the National Natural Science Foundation of China (Grant No. 11701291, 12101327 and 11801281) and the Natural Science Foundation of Jiangsu Province (Grant No. BK20200848).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Feng Wang.

Ethics declarations

Conflict of Interest

The authors declare that they have no relevant conflicts of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, H., Wang, F., Chen, J. et al. A Conforming Virtual Element Method Based on Unfitted Meshes for the Elliptic Interface Problem. J Sci Comput 96, 21 (2023). https://doi.org/10.1007/s10915-023-02229-y

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10915-023-02229-y

Keywords

Mathematics Subject Classification

Navigation