Skip to main content
Log in

Numerical Reconstruction of a Discontinuous Diffusive Coefficient in Variable-Order Time-Fractional Subdiffusion

  • Published:
Journal of Scientific Computing Aims and scope Submit manuscript

Abstract

We consider a discontinuous coefficient reconstruction problem associated with a variable-order time-fractional subdiffusion equation. Both interface identification and reconstruction of piecewise constant coefficient values are considered. We show existence of a minimizer of the regularized inverse problem. Shape sensitivity analysis is performed to propose a shape gradient optimization algorithm allowing deformations. Moreover, an algorithm allowing shape and topological changes is proposed by a phase-field method with sensitivity analysis. Numerical examples are presented to demonstrate effectiveness of the two algorithms for recovering both subdiffusion interface and the two subdiffusion constants.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19

Similar content being viewed by others

Data Availability

Data sharing not applicable to this article as no data sets were generated or analyzed during the current study.

References

  1. Beretta, E., Micheletti, S., Perotto, S., Santacesaria, M.: Reconstruction of a piecewise constant conductivity on a polygonal partition via shape optimization in EIT. J. Comput. Phys. 353, 264–280 (2018)

    MathSciNet  MATH  Google Scholar 

  2. Berggren, M.: A unified discrete-continuous sensitivity analysis method for shape optimization. Appl. Numer. Partial Differ. Equ. (Springer, Berlin) Comput. Methods Appl. Sci. 15, 25–39 (2010)

    MathSciNet  MATH  Google Scholar 

  3. Bourdin, B., Chambolle, A.: Design-dependent loads in topology optimization. ESAIM Control Optim. Calc. Var. 9, 19–48 (2003)

    MathSciNet  MATH  Google Scholar 

  4. Burger, M., Osher, S.: A survey on level set methods for inverse problems and optimal design. Eur. J. Appl. Math. 16, 263–301 (2005)

    MathSciNet  MATH  Google Scholar 

  5. Burman, E., Elfverson, D., Hansbo, P., Larson, M., Larsson, K.: Shape optimization using the cut finite element method. Comput. Methods Appl. Mech. Eng. 328, 242–261 (2018)

    MathSciNet  MATH  Google Scholar 

  6. Chan, T., Tai, X.: Identification of discontinuous coefficients in elliptic problems using total variation regularization. SIAM J. Sci. Comput. 25, 881–904 (2003)

    MathSciNet  MATH  Google Scholar 

  7. Chan, T., Tai, X.: Level set and total variation regularization for elliptic inverse problems with discontinuous coefficients. J. Comput. Phys. 193, 40–66 (2004)

    MathSciNet  MATH  Google Scholar 

  8. Chen, C., Liu, F., Anh, V., Turner, I.: Numerical schemes with high spatial accuracy for a variable-order anomalous subdiffusion equation. SIAM J. Sci. Comput. 32, 1740–1760 (2010)

    MathSciNet  MATH  Google Scholar 

  9. Cheng, J., Nakagawa, J., Yamamoto, M., Yamazaki, T.: Uniqueness in an inverse problem for a one-dimensional fractional diffusion equation. Inverse Probl. 25, 15002 (2009)

    MathSciNet  Google Scholar 

  10. Correa, R., Seeger, A.: Directional derivative of a minimax function. Nonlinear Anal. 9, 13–22 (1985)

    MathSciNet  MATH  Google Scholar 

  11. Delfour, M., Zolésio, J.P.: Shapes and Geometries. Metrics, Analysis, Differential Calculus, and Optimization, 2nd edn. SIAM, Philadelphia (2011)

    MATH  Google Scholar 

  12. Deng, W., Li, B., Qian, Z., Wang, H.: Time discretization of a tempered fractional Feynman–Kac equation with measure data. SIAM J. Numer. Anal. 56, 3249–3275 (2018)

    MathSciNet  MATH  Google Scholar 

  13. Du, Q., Feng, X.: The Phase Field Method for Geometric Moving Interfaces and Their Numerical Approximations. Handbook of Numerical Analysis, vol. 21, pp. 425–508. Elsevier, Amsterdam (2020)

    MATH  Google Scholar 

  14. Fan, W., Hu, X., Zhu, S.: Modelling, analysis, and numerical methods for a geometric inverse source problem in variable-order time-fractional subdiffusion. Inverse Probl. Imaging 17(4), 767–797 (2023)

    MathSciNet  MATH  Google Scholar 

  15. Garcke, H., Hecht, C., Hinze, M., Kahle, C.: Numerical approximation of phase field based shape and topology optimization for fluids. SIAM J. Sci. Comput. 37, A1846–A1871 (2015)

    MathSciNet  MATH  Google Scholar 

  16. Giona, M., Cerbelli, S., Roman, H.E.: Fractional diffusion equation and relaxation in complex viscoelastic materials. Phys. A 191, 449–453 (1992)

    Google Scholar 

  17. Gunzburger, M., Wang, J.: Error analysis of fully discrete finite element approximations to an optimal control problem governed by a time-fractional pde. SIAM J. Control Optim. 57, 241–263 (2019)

    MathSciNet  MATH  Google Scholar 

  18. Haslinger, J., Mäkinen, R.: Introduction to Shape Optimization. Theory, Approximation, and Computation. SIAM, Philadelphia (2003)

    MATH  Google Scholar 

  19. Hecht, F.: New development in freefem++. J. Numer. Math. 20, 251–265 (2012)

    MathSciNet  MATH  Google Scholar 

  20. Hegemann, J., Cantarero, A., Teran, J.: An explicit update scheme for inverse parameter and interface estimation of piecewise constant coefficients in linear elliptic pdes. SIAM J. Sci. Comput. 35, A1098–A1119 (2013)

    MathSciNet  MATH  Google Scholar 

  21. Hiptmair, R., Paganini, A., Sargheini, S.: Comparison of approximate shape gradients. BIT 55, 459–485 (2015)

    MathSciNet  MATH  Google Scholar 

  22. Hoffmann, K., Sokolowski, J.: Interface optimization problems for parabolic equations. Control Cybernet 23, 445–452 (1994)

    MathSciNet  MATH  Google Scholar 

  23. Hu, X., Zhu, S.: Isogeometric analysis for time-fractional partial differential equations. Numer. Algorithms 85, 909–930 (2020)

    MathSciNet  MATH  Google Scholar 

  24. Hu, X., Zhu, S.: On geometric inverse problems in time-fractional subdiffusion. SIAM J. Sci. Comput. 6, A3560–A3591 (2022)

    MathSciNet  MATH  Google Scholar 

  25. Ingman, D., Suzdalnitsky, J.: Control of damping oscillations by fractional differential operator with time-dependent order. Comput. Methods Appl. Mech. Eng. 193, 5585–5595 (2004)

    MathSciNet  MATH  Google Scholar 

  26. Ito, K., Kunisch, K.: Lagrange Multiplier Approach to Variational Problems and Applications. SIAM, Philadelphia (2008)

    MATH  Google Scholar 

  27. Ito, K., Kunisch, K., Li, Z.: Level-set function approach to an inverse interface problem. Inverse Probl. 17, 1225 (2001)

    MathSciNet  MATH  Google Scholar 

  28. Jin, B.: Fractional Differential Equations-an Approach Via Fractional Derivatives. Springer, Cham (2021)

    MATH  Google Scholar 

  29. Jin, B., Li, B., Zhou, Z.: Pointwise-in-time error estimates for an optimal control problem with subdiffusion constraint. IMA J. Numer. Anal. 40, 277–404 (2020)

    MathSciNet  MATH  Google Scholar 

  30. Jin, B., Zhou, Z.: Numerical estimation of a diffusion coefficient in subdiffusion. SIAM J. Control. Optim. 59, 1466–1496 (2021)

    MathSciNet  MATH  Google Scholar 

  31. Kaltenbacher, B., Rundell, W.: On an inverse potential problem for a fractional reaction–diffusion equation. Inverse Probl. 6, 065004, 31 pp (2019)

    MathSciNet  MATH  Google Scholar 

  32. Laurain, A., Sturm, K.: Distributed shape derivative via averaged adjoint method and applications. ESAIM Math. Model. Numer. Anal. 50, 1241–1267 (2016)

    MathSciNet  MATH  Google Scholar 

  33. Lee, T., Bocquet, L., Coasne, B.: Activated desorption at heterogeneous interfaces and long-time kinetics of hydrocarbon recovery from nanoporous media. Nat. Commun. 7, 11890 (2016)

    Google Scholar 

  34. Liu, C., Zhu, S.: A semi-implicit binary level set method for source reconstruction problems. Int. J. Numer. Anal. Model. 8, 410–426 (2011)

    MathSciNet  MATH  Google Scholar 

  35. Liu, J., Yamamoto, M.: A backward problem for the time-fractional diffusion equation. Appl. Anal. 89, 1769–1788 (2010)

    MathSciNet  MATH  Google Scholar 

  36. Lorenzo, C., Hartley, T.: Variable order and distributed order fractional operators. Nonlinear Dyn. 29, 57–98 (2002)

    MathSciNet  MATH  Google Scholar 

  37. Meerschaert, M., Sikorskii, A.: Stochastic Models for Fractional Calculus. Springer, Berlin (2012)

    MATH  Google Scholar 

  38. Metzler, R., Klafter, J.: The random walk’s guide to anomalous diffusion: a fractional dynamics approach. Phys. Rep. 339, 1–77 (2000)

    MathSciNet  MATH  Google Scholar 

  39. Podlubny, I.: Fractional Differential Equations. Academic Press, San Diego (1999)

    MATH  Google Scholar 

  40. Rundell, W., Zhang, Z.: Recovering an unknown source in a fractional diffusion problem. J. Comput. Phys. 368, 299–314 (2018)

    MathSciNet  MATH  Google Scholar 

  41. Sakamoto, K., Yamamoto, M.: Inverse source problem with a final over determination for a fractional diffusion equation. Math. Control Relat. Fields 1, 509–518 (2011)

    MathSciNet  MATH  Google Scholar 

  42. Schulz, V., Siebenborn, M., Welker, K.: Structured inverse modeling in parabolic diffusion problems. SIAM J. Control Optim. 53, 3319–3338 (2015)

    MathSciNet  MATH  Google Scholar 

  43. Sokolowski, J., Zolésio, J.P.: Introduction to Shape Optimization: Shape Sensitivity Analysis. Springer, Heidelberg (1992)

    MATH  Google Scholar 

  44. Sun, H., Chang, A., Zhang, Y., Chen, W.: A review on variable-order fractional differential equations: mathematical foundations, physical models, numerical methods and applications. Fract. Calc. Appl. Anal. 22, 27–59 (2019)

    MathSciNet  MATH  Google Scholar 

  45. Takezawa, A., Nishiwaki, S., Kitamura, M.: Shape and topology optimization based on the phase field method and sensitivity analysis. J. Comput. Phys. 229, 2697–2718 (2010)

    MathSciNet  MATH  Google Scholar 

  46. Tang, T., Yu, H., Zhou, T.: On energy dissipation theory and numerical stability for time-fractional phase-field equations. SIAM J. Sci. Comput. 41, A3757–A3778 (2019)

    MathSciNet  MATH  Google Scholar 

  47. Thomée, V.: Galerkin Finite Element Methods for Parabolic Problems. Springer, Berlin (1997)

    MATH  Google Scholar 

  48. Wang, T., Li, B., Xie, X.: Discontinuous Galerkin method for a distributed optimal control problem governed by a time fractional diffusion equation. Comput. Math. Appl. 128, 1–11 (2022)

    MathSciNet  MATH  Google Scholar 

  49. Wei, T., Wang, J.: A modified quasi-boundary value method for an inverse source problem of the time-fractional diffusion equation. Appl. Numer. Math. 78, 95–111 (2014)

    MathSciNet  MATH  Google Scholar 

  50. Yeganeh, S., Mokhtari, R., Hesthaven, J.S.: Space-dependent source determination in a time-fractional diffusion equation using a local discontinuous Galerkin method. BIT 57, 685–707 (2017)

    MathSciNet  MATH  Google Scholar 

  51. Zeng, F., Zhang, Z., Karniadakis, G.: A generalized spectral collocation method with tunable accuracy for variable-order fractional differential equations. SIAM J. Sci. Comput. 37, A2710–A2732 (2015)

    MathSciNet  MATH  Google Scholar 

  52. Zheng, X., Wang, H.: A hidden-memory variable-order time-fractional optimal control model: analysis and approximation. SIAM J. Control Optim. 59, 1851–1880 (2021)

    MathSciNet  MATH  Google Scholar 

  53. Zheng, X., Wang, H.: Optimal-order error estimates of finite element approximations to variable-order time-fractional diffusion equations without regularity assumptions of the true solutions. IMA J. Numer. Anal. 41, 1522–1545 (2021)

    MathSciNet  MATH  Google Scholar 

  54. Zheng, X., Wang, H.: Discretization and analysis of an optimal control of a variable-order time-fractional diffusion equation with pointwise constraints. J. Sci. Comput. 91, 56 (2022)

    MathSciNet  MATH  Google Scholar 

  55. Zhou, Z., Gong, W.: Finite element approximation of optimal control problems governed by time fractional diffusion equation. Comput. Math. Appl. 71, 301–318 (2016)

    MathSciNet  MATH  Google Scholar 

  56. Zhu, S.: Effective shape optimization of Laplace eigenvalue problems using domain expressions of Eulerian derivatives. J. Optim. Theory Appl. 176, 17–34 (2018)

    MathSciNet  MATH  Google Scholar 

  57. Zhu, S., Gao, Z.: Convergence analysis of mixed finite element approximations to shape gradients in the stokes equation. Comput. Methods Appl. Mech. Eng. 343, 127–150 (2019)

    MathSciNet  MATH  Google Scholar 

  58. Zhu, S., Hu, X., Wu, Q.: A level set method for shape optimization in semilinear elliptic problems. J. Comput. Phys. 355, 104–120 (2018)

    MathSciNet  MATH  Google Scholar 

Download references

Funding

This work was supported in part by the National Key Basic Research Program under Grant 2022YFA1004402, the Science and Technology Commission of Shanghai Municipality (Nos. 21JC1402500, 22ZR1421900, and 22DZ2229014), and the National Natural Science Foundation of China under Grant (No. 12071149).

Author information

Authors and Affiliations

Authors

Contributions

All authors contributed to the study conception and design. All authors read and approved the final manuscript.

Corresponding author

Correspondence to Shengfeng Zhu.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Fan, W., Hu, X. & Zhu, S. Numerical Reconstruction of a Discontinuous Diffusive Coefficient in Variable-Order Time-Fractional Subdiffusion. J Sci Comput 96, 13 (2023). https://doi.org/10.1007/s10915-023-02237-y

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10915-023-02237-y

Keywords

Mathematics Subject Classification

Navigation