Skip to main content
Log in

Cauchy Noise Removal via Convergent Plug-and-Play Framework with Outliers Detection

  • Published:
Journal of Scientific Computing Aims and scope Submit manuscript

Abstract

Restoring natural images corrupted by Cauchy noise is a challenging issue in image processing. In the existing methods, the traditional model-driven and filter-based methods can not recover the images well, and the learning-based plug-and-play method lacks convergence guarantees. In this paper, we propose a convergent plug-and-play method with outliers detection (C-PnPO) to remove Cauchy noise. The outlier detection is based on an outlier map regularized by maximum entropy. Due to the statistical properties of Cauchy distribution and the implicit deep image priors, the problem is non-convex and implicit. We present a convergent algorithm to address these issues by an adaptively relaxed alternating direction method of multipliers. Theoretically, we give some useful mathematical properties, including the existence of solutions under mild assumptions, and the global linear convergence of the proposed method by an adaptive relaxation strategy. Experimental results show that the outliers can be successfully detected, and the proposed method outperforms the existing state-of-art traditional and learning-based methods both in terms of quantitative and qualitative comparisons.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Algorithm 1
Algorithm 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

Data Availibility

All the pictures are available upon reasonable request. For the purpose of reproducible, source codes are available at https://github.com/WinSanyu/CPnP-Cauchy-Noise-Removal-with-Outliers-Detection.

References

  1. Beck, A.: First-Order Methods in Optimization. Society for Industrial and Applied Mathematics (2017)

  2. Bhuiyan, M.I.H., Ahmad, M.O., Swamy, M.: Spatially adaptive wavelet-based method using the Cauchy prior for denoising the Sar images. IEEE Trans. Circuits Syst. Video Technol. 17(4), 500–507 (2007)

    Article  Google Scholar 

  3. Boyd, S., Parikh, N., Chu, E., Peleato, B., Eckstein, J., et al.: Distributed optimization and statistical learning via the alternating direction method of multipliers. Found. Trends® Mach. Learn. 3(1), 1–122 (2011)

  4. Brownrigg, D.R.: The weighted median filter. Commun. ACM 27(8), 807–818 (1984)

    Article  Google Scholar 

  5. Cai, J.F., Chan, R.H., Nikolova, M.: Fast two-phase image deblurring under impulse noise. J. Math. Imaging Vis. 36(1), 46–53 (2010)

    Article  MathSciNet  Google Scholar 

  6. Chambolle, A.: An algorithm for total variation minimization and applications. J. Math. Imag. Vis. 20(1), 89–97 (2004)

    MathSciNet  MATH  Google Scholar 

  7. Chan, R.H., Chen, K.: Fast multilevel algorithm for a minimization problem in impulse noise removal. SIAM J. Sci. Comput. 30(3), 1474–1489 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  8. Chan, S.H., Wang, X., Elgendy, O.A.: Plug-and-play ADMM for image restoration: fixed-point convergence and applications. IEEE Trans. Comput. Imag. 3(1), 84–98 (2016)

    Article  MathSciNet  Google Scholar 

  9. Chan, T.F., Shen, J.: Image Processing and Analysis: Variational, PDE, Wavelet, and Stochastic Methods. SIAM (2005)

  10. Cohen, R., Blau, Y., Freedman, D., Rivlin, E.: It has potential: Gradient-driven denoisers for convergent solutions to inverse problems. Adv. Neural. Inf. Process. Syst. 34, 18152–18164 (2021)

    Google Scholar 

  11. Combettes, P.L., Wajs, V.R.: Signal recovery by proximal forward-backward splitting. Multisc. Model. Simul. 4(4), 1168–1200 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  12. Ding, M., Huang, T.Z., Ma, T.H., Zhao, X.L., Yang, J.H.: Cauchy noise removal using group-based low-rank prior. Appl. Math. Comput. 372, 124971 (2020)

    MathSciNet  MATH  Google Scholar 

  13. Durand, S., Fadili, J., Nikolova, M.: Multiplicative noise removal using l1 fidelity on frame coefficients. J. Math. Imag. Vis. 36(3), 201–226 (2010)

    Article  Google Scholar 

  14. Efron, B.: Tweedie’s formula and selection bias. J. Am. Stat. Assoc. 106(496), 1602–1614 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  15. Elad, M., Aharon, M.: Image denoising via sparse and redundant representations over learned dictionaries. IEEE Trans. Image Process. 15(12), 3736–3745 (2006)

    Article  MathSciNet  Google Scholar 

  16. Feller, W.: An introduction to probability theory and its applications. Vols. I & II, Wiley I 968 (1971)

  17. Gonzalez, J.G., Arce, G.R.: Optimality of the myriad filter in practical impulsive-noise environments. IEEE Trans. Signal Process. 49(2), 438–441 (2001)

    Article  Google Scholar 

  18. Gu, S., Zhang, L., Zuo, W., Feng, X.: Weighted nuclear norm minimization with application to image denoising. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 2862–2869 (2014)

  19. Guo, X., Lin, Z.: Route: robust outlier estimation for low rank matrix recovery. In: Proceedings of the 26th International Joint Conference on Artificial Intelligence, pp. 1746–1752 (2017)

  20. Huang, Y.M., Ng, M.K., Wen, Y.W.: A new total variation method for multiplicative noise removal. SIAM J. Imag. Sci. 2(1), 20–40 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  21. Huang, Y.M., Yan, H.Y., Zeng, T.: Multiplicative noise removal based on unbiased box–cox transformation. Commun. Comput. Phys. 22(3), 803–828 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  22. Hurault, S., Leclaire, A., Papadakis, N.: Gradient step denoiser for convergent plug-and-play. In: International Conference on Learning Representations (ICLR’22) (2022)

  23. Hurault, S., Leclaire, A., Papadakis, N.: Proximal denoiser for convergent plug-and-play optimization with nonconvex regularization. In: International Conference on Machine Learning, pp. 9483–9505. PMLR (2022)

  24. Idan, M., Speyer, J.L.: Cauchy estimation for linear scalar systems. IEEE Trans. Autom. Control 55(6), 1329–1342 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  25. Ignatov, A., Timofte, R., et al.: Pirm challenge on perceptual image enhancement on smartphones: report. In: European Conference on Computer Vision (ECCV) Workshops (2019)

  26. Jia, F., Liu, J., Tai, X.C.: A regularized convolutional neural network for semantic image segmentation. Anal. Appl. 19(01), 147–165 (2021)

    Article  MathSciNet  MATH  Google Scholar 

  27. Karakuş, O., Mayo, P., Achim, A.: Convergence guarantees for non-convex optimisation with Cauchy-based penalties. IEEE Trans. Signal Process. 68, 6159–6170 (2020)

    Article  MathSciNet  MATH  Google Scholar 

  28. Kim, G., Cho, J., Kang, M.: Cauchy noise removal by weighted nuclear norm minimization. J. Sci. Comput. 83(1), 1–21 (2020)

    Article  MathSciNet  MATH  Google Scholar 

  29. Kuruoglu, E.E., Fitzgerald, W.J., Rayner, P.J.: Near optimal detection of signals in impulsive noise modeled with a symmetric/spl alpha/-stable distribution. IEEE Commun. Lett. 2(10), 282–284 (1998)

    Article  Google Scholar 

  30. Laus, F., Pierre, F., Steidl, G.: Nonlocal myriad filters for Cauchy noise removal. J. Math. Imaging Vis. 60(8), 1324–1354 (2018)

    Article  MathSciNet  MATH  Google Scholar 

  31. Liu, P., Zhang, H., Zhang, K., Lin, L., Zuo, W.: Multi-level wavelet-cnn for image restoration. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition Workshops, pp. 773–782 (2018)

  32. Marmin, A., Jezierska, A., Castella, M., Pesquet, J.C.: Global optimization for recovery of clipped signals corrupted with Poisson–Gaussian noise. IEEE Signal Process. Lett. 27, 970–974 (2020)

    Article  Google Scholar 

  33. Mei, J.J., Dong, Y., Huang, T.Z., Yin, W.: Cauchy noise removal by nonconvex ADMM with convergence guarantees. J. Sci. Comput. 74(2), 743–766 (2018)

    Article  MathSciNet  MATH  Google Scholar 

  34. Rockafellar, R.T., Wets, R.J.B.: Variational Analysis, vol. 317. Springer (2009)

  35. Rudin, L.I., Osher, S., Fatemi, E.: Nonlinear total variation based noise removal algorithms. Physica D 60(1–4), 259–268 (1992)

    Article  MathSciNet  MATH  Google Scholar 

  36. Ryu, E., Liu, J., Wang, S., Chen, X., Wang, Z., Yin, W.: Plug-and-play methods provably converge with properly trained denoisers. In: International Conference on Machine Learning, pp. 5546–5557. PMLR (2019)

  37. Samorodnitsky, G., Taqqu, M.S., Linde, R.: Stable non-gaussian random processes: stochastic models with infinite variance. Bull. Lond. Math. Soc. 28(134), 554–555 (1996)

    Google Scholar 

  38. Sciacchitano, F., Dong, Y., Zeng, T.: Variational approach for restoring blurred images with Cauchy noise. SIAM J. Imag. Sci. 8(3), 1894–1922 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  39. Stankovic, S., Orovic, I., Ioana, C.: Effects of Cauchy integral formula discretization on the precision of if estimation: unified approach to complex-lag distribution and its counterpart l-form. IEEE Signal Process. Lett. 16(4), 327–330 (2009)

    Article  Google Scholar 

  40. Tsihrintzis, G., Nikias, C.: Evaluation of fractional, lower-order statistics-based detection algorithms on real radar sea-clutter data. IEE Proc.-Radar Sonar Navig. 144(1), 29–37 (1997)

    Article  Google Scholar 

  41. Weiss, P., Blanc-Féraud, L., Aubert, G.: Efficient schemes for total variation minimization under constraints in image processing. SIAM J. Sci. Comput. 31(3), 2047–2080 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  42. Wu, T., Li, W., Jia, S., Dong, Y., Zeng, T.: Deep multi-level wavelet-CNN denoiser prior for restoring blurred image with Cauchy noise. IEEE Signal Process. Lett. 27, 1635–1639 (2020)

    Article  Google Scholar 

  43. Yang, X., Petropulu, A.P.: Co-channel interference modeling and analysis in a Poisson field of interferers in wireless communications. IEEE Trans. Signal Process. 51(1), 64–76 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  44. Zhang, K., Zuo, W., Chen, Y., Meng, D., Zhang, L.: Beyond a gaussian denoiser: residual learning of deep CNN for image denoising. IEEE Trans. Image Process. 26(7), 3142–3155 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  45. Zhang, X., Javidi, B., Ng, M.K.: Automatic regularization parameter selection by generalized cross-validation for total variational Poisson noise removal. Appl. Opt. 56(9), D47–D51 (2017)

    Article  Google Scholar 

Download references

Funding

This work is supported in part by Natural Science Foundation of Shanghai (No. 22ZR1419500), Science and Technology Commission of Shanghai Municipality (No. 22DZ2229014), and the Open Project of Shanghai Key Laboratory of Magnetic Resonance, ECNU.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Fang Li.

Ethics declarations

Conflict of interest

We declare that we do not have any commercial or associative interest that represents a conflict of interest in connection with the work submitted.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wei, D., Li, F. & Weng, S. Cauchy Noise Removal via Convergent Plug-and-Play Framework with Outliers Detection. J Sci Comput 96, 76 (2023). https://doi.org/10.1007/s10915-023-02303-5

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10915-023-02303-5

Keywords

Mathematics Subject Classification

Navigation