Skip to main content
Log in

Decoupled and Unconditionally Energy Stable Finite Element Schemes for Electrohydrodynamic Model with Variable Density

  • Published:
Journal of Scientific Computing Aims and scope Submit manuscript

Abstract

In this paper, we construct two new linear, decoupled, unconditionally energy stable finite element schemes for electrohydrodynamic model of charge transport with variable density dielectric fluid. The fully-decoupled schemes are achieved by the property of two nonlocal auxiliary variables and applying the operator Strang-splitting method. At each time step, all variables can be computed independently by solving a sequence of linear finite element schemes and algebraic equations. The solvability and unconditionally energy stability of the two schemes are rigorously demonstrated. Numerical experiments verify the effectiveness and stability of the proposed schemes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Data Availability

Enquiries about data availability should be directed to the authors.

References

  1. Cai, W., Li, B., Li, Y.: Error analysis of a fully discrete finite element method for variable density incompressible flows in two dimensions. ESAIM Math. Model. Numer. Anal. 55, S103–S147 (2021)

    Article  MathSciNet  Google Scholar 

  2. Chen, C., Yang, X.: Fully-discrete finite element numerical scheme with decoupling structure and energy stability for the Cahn–Hilliard phase-field model of two-phase incompressible flow system with variable density and viscosity. ESAIM Math. Model. Numer. Anal. 55(5), 2323–2347 (2021)

    Article  MathSciNet  MATH  Google Scholar 

  3. Chen, C., Yang, X.: Highly efficient and unconditionally energy stable semi-discrete time-marching numerical scheme for the two-phase incompressible flow phase-field system with variable-density and viscosity. Sci. China Math. 65, 1–26 (2022)

    Article  MathSciNet  MATH  Google Scholar 

  4. Chen, H., Mao, J., Shen, J.: Error estimate of Gauge-Uzawa methods for incompressible flows with variable density. J. Comput. Appl. Math. 364, 112321 (2020)

    Article  MathSciNet  MATH  Google Scholar 

  5. Chicón, R., Castellanos, A., Martin, E.: Numerical modelling of Coulomb-driven convection in insulating liquids. J. Fluid Mech. 344, 43–66 (1997)

    Article  MATH  Google Scholar 

  6. Cimpeanu, R., Papageorgiou, D.T., Petropoulos, P.G.: On the control and suppression of the Rayleigh–Taylor instability using electric fields. Phys. Fluids 26(2), 022105 (2014)

    Article  MATH  Google Scholar 

  7. Girault, V., Raviart, P.A.: Finite Element Methods for Navier–Stokes Equations: Theory and Algorithms, vol. 5. Springer (2012)

    MATH  Google Scholar 

  8. Guermond, J.L., Salgado, A.: A fractional step method based on a pressure Poisson equation for incompressible flows with variable density. C. R. Math. 346(15–16), 913–918 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  9. Hecht, F.: New development in FreeFem++. J. Numer. Math. 20(3–4), 251–266 (2012)

    MathSciNet  MATH  Google Scholar 

  10. Kupershtokh, A., Medvedev, D.: Lattice Boltzmann equation method in electrohydrodynamic problems. J. Electrostat. 64(7–9), 581–585 (2006)

    Article  Google Scholar 

  11. Li, T.F., Wu, J., Luo, K., Yi, H.L.: Lattice Boltzmann simulation of electro-hydro-dynamic (EHD) natural convection heat transfer in horizontal cylindrical annuli. Int. Commun. Heat Mass Transf. 98, 106–115 (2018)

    Article  Google Scholar 

  12. Li, Y., Mei, L., Ge, J., Shi, F.: A new fractional time-stepping method for variable density incompressible flows. J. Comput. Phys. 242, 124–137 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  13. López-Herrera, J., Popinet, S., Herrada, M.A.: A charge-conservative approach for simulating electrohydrodynamic two-phase flows using volume-of-fluid. J. Comput. Phys. 230(5), 1939–1955 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  14. Luo, K., Li, T., Wu, J., Yi, H., Tan, H.: Mesoscopic simulation of electrohydrodynamic effects on laminar natural convection of a dielectric liquid in a cubic cavity. Phys. Fluids 30(10), 103601 (2018)

    Article  Google Scholar 

  15. Luo, K., Pérez, A.T., Wu, J., Yi, H., Tan, H.: Efficient lattice Boltzmann method for electrohydrodynamic solid–liquid phase change. Phys. Rev. E 100(1), 013306 (2019)

    Article  Google Scholar 

  16. Pan, M., Fu, C., Zhu, W., Jiao, F., He, D.: Linear, second-order, unconditionally energy stable scheme for an electrohydrodynamic model with variable density and conductivity. Commun. Nonlinear Sci. Numer. Simul. 125, 107329 (2023)

    Article  MathSciNet  Google Scholar 

  17. Pan, M., He, D., Pan, K.: Unconditionally energy stable schemes for an electrohydrodynamic model of charge transport in dielectric liquids. Comput. Methods Appl. Mech. Eng. 361, 112817 (2020)

    Article  MathSciNet  MATH  Google Scholar 

  18. Pan, M., He, D., Pan, K.: Energy stable finite element method for an electrohydrodynamic model with variable density. J. Comput. Phys. 424, 109870 (2021)

    Article  MathSciNet  MATH  Google Scholar 

  19. Pan, M., Wang, Q., He, D., Pan, K.: Positive-definiteness preserving and energy stable time-marching scheme for a diffusive Oldroyd-B electrohydrodynamic model. Commun. Nonlinear Sci. Numer. Simul. 95(8), 105630 (2021)

    Article  MathSciNet  MATH  Google Scholar 

  20. Pérez, A., Vázquez, P., Wu, J., Traoré, P.: Electrohydrodynamic linear stability analysis of dielectric liquids subjected to unipolar injection in a rectangular enclosure with rigid sidewalls. J. Fluid Mech. 758, 586–602 (2014)

    Article  MathSciNet  Google Scholar 

  21. Pyo, J.H., Shen, J.: Gauge-Uzawa methods for incompressible flows with variable density. J. Comput. Phys. 221(1), 181–197 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  22. Si, Z., He, D.: Unconditional stability and error estimates of FEMs for the electro-osmotic flow in micro-channels. p. 10.48550. arXiv arXiv:2210.10550 (2022)

  23. Stuetzer, O.M.: Magnetohydrodynamics and electrohydrodynamics. Phys. Fluids 5(5), 534–544 (1962)

    Article  MATH  Google Scholar 

  24. Temam, R.: Navier–Stokes Equations: Theory and Numerical Analysis, vol. 2, 3rd edn. North-Holland, Amsterdam, New York, Oxford (1984)

  25. Traoré, P., Pérez, A.: Two-dimensional numerical analysis of electroconvection in a dielectric liquid subjected to strong unipolar injection. Phys. Fluids 24(3), 037102 (2012)

    Article  Google Scholar 

  26. Traoré, P., Pérez, A., Koulova, D., Romat, H.: Numerical modelling of finite-amplitude electro-thermo-convection in a dielectric liquid layer subjected to both unipolar injection and temperature gradient. J. Fluid Mech. 658, 279–293 (2010)

    Article  MATH  Google Scholar 

  27. Traoré, P., Wu, J.: On the limitation of imposed velocity field strategy for Coulomb-driven electroconvection flow simulations. J. Fluid Mech. 727, 1–12 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  28. Vázquez, P., Castellanos, A.: Stability analysis of the 3D electroconvective charged flow between parallel plates using the particle-in-cell method. In: 2011 IEEE International Conference on Dielectric Liquids, pp. 1–4. IEEE (2011)

  29. Vázquez, P., Castellanos, A.: Numerical simulation of EHD flows using discontinuous Galerkin finite element methods. Comput. Fluids 84, 270–278 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  30. Vazquez, P., Soria, C., Castellanos, A.: Numerical simulation of two-dimensional EHD plumes mixing finite element and particle methods. In: The 17th Annual Meeting of the IEEE Lasers and Electro-Optics Society, 2004. LEOS 2004., pp. 122–125. IEEE (2004)

  31. Wang, L., Wei, Z., Li, T., Chai, Z., Shi, B.: A lattice Boltzmann modelling of electrohydrodynamic conduction phenomenon in dielectric liquids. Appl. Math. Model. 95, 361–378 (2021)

    Article  MathSciNet  MATH  Google Scholar 

  32. Wang, Z., Chen, C., Li, Y., Yang, X.: Decoupled finite element scheme of the variable-density and viscosity phase-field model of a two-phase incompressible fluid flow system using the volume-conserved Allen–Cahn dynamics. J. Comput. Appl. Math. 420, 114773 (2023)

    Article  MathSciNet  MATH  Google Scholar 

  33. Wu, J., Traoré, P.: A finite-volume method for electro-thermoconvective phenomena in a plane layer of dielectric liquid. Numer. Heat Transf. Part A Appl. 68(5), 471–500 (2015)

    Article  Google Scholar 

  34. Yang, X.: Efficient linear, fully-decoupled and energy stable numerical scheme for a variable density and viscosity, volume-conserved, hydrodynamically coupled phase-field elastic bending energy model of lipid vesicles. Comput. Methods Appl. Mech. Eng. 400, 115479 (2022)

    Article  MathSciNet  MATH  Google Scholar 

  35. Yao, H., Xu, C., Azaiez, M.: Stable and decoupled schemes for an electrohydrodynamics model. Math. Comput. Simul. 206, 689–708 (2023)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Funding

The authors have disclosed the funding on the footnote of the title page.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hongtao Chen.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

This paper is supported by National Key R &D Program of China (No. 2022YFA1004500), Natural Science Foundation of Fujian Province of China (No. 2021J01034) and Fundamental Research Funds for the Central Universities (No. 20720220038).

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

He, Y., Chen, H. Decoupled and Unconditionally Energy Stable Finite Element Schemes for Electrohydrodynamic Model with Variable Density. J Sci Comput 96, 78 (2023). https://doi.org/10.1007/s10915-023-02304-4

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10915-023-02304-4

Keywords

Mathematics Subject Classification

Navigation