Skip to main content
Log in

A Finite Element Method for the Dynamical Ginzburg–Landau Equations under Coulomb Gauge

  • Published:
Journal of Scientific Computing Aims and scope Submit manuscript

Abstract

This paper is concerned with numerical analysis of a finite element method for the time-dependent Ginzburg–Landau equations under the Coulomb gauge. The main challenge is that the magnetic potential \({{\varvec{A}}}\) is divergence-free and satisfies a Stokes-like structure under the Coulomb gauge. The proposed method uses linear Lagrange element \({\mathcal {P}}_1\) to solve for the order parameter \(\psi \), the lowest order Nédélec edge element \(\mathcal {N}\! \mathcal {D}_{\! 1}\) and linear Lagrange element \({P}_1\) to approximate the magnetic potential \({{\varvec{A}}}\) and the electric potential \(\phi \), respectively. In particular, the proposed method preserves a weakly divergence-free property for \({{\varvec{A}}}\) in the discrete level. The main aim of this work is to establish the second order spatial convergence of the most important variable \(\psi \), though the numerical solutions of \({{\varvec{A}}}\) are only O(h) in space. Our analysis is based on a nonstandard quasi-projection for \(\psi \) and the corresponding \(H^{-1}\)-norm estimates for Maxwell projection. With the quasi-projection, we prove that the lower-order approximation to \({{\varvec{A}}}\) does not pollute the accuracy of \(\psi _h\). An effective one step recovery is also proposed to obtain second order numerical solution for \({{\varvec{A}}}\). Our numerical experiments confirm the optimal second order convergence of \(\psi _h\) and the efficiency of the recovery step.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Data Availability

The datasets generated during and/or analysed during the current study are available from the authors on reasonable request.

References

  1. Alstrøm, T., Sørensen, M., Pedersen, N., Madsen, S.: Magnetic flux lines in complex geometry type-II superconductors studied by the time dependent Ginzburg-Landau equation. Acta Appl. Math. 115, 63–74 (2011)

    MathSciNet  MATH  Google Scholar 

  2. Arnold, D., Falk, R., Winther, R.: Finite element exterior calculus: from Hodge theory to numerical stability. Bull. Amer. Math. Soc. (N. S.) 47, 281–354 (2010)

    MathSciNet  MATH  Google Scholar 

  3. Bethuel, F., Brezis, H., Heléin, F.: Ginzburg-Landau Vortices. Birkhäuser, Boston (1994)

    MATH  Google Scholar 

  4. Bochev, P., Lehoucq, R.: On the finite element solution of the pure Neumann problem. SIAM Rev. 47, 50–66 (2005)

    MathSciNet  MATH  Google Scholar 

  5. Boffi, D., Brezzi, F., Fortin, M.: Mixed Finite Element Methods and Applications. Springer, Heidelberg (2013)

    MATH  Google Scholar 

  6. Carlson, J., Pack, A., Transtrum, M., Lee, J., Seidman, D., Liarte, D., Sitaraman, N., Senanian, A., Kelley, M., Sethna, J., Arias, T., Posen, S.: Analysis of magnetic vortex dissipation in Sn-segregated boundaries in Nb\(_3\)Sn superconducting RF cavities. Phys. Rev. B 103, 024516 (2021)

    Google Scholar 

  7. Chen, Z., Hoffmann, K., Liang, J.: On a non-stationary Ginzburg-Landau superconductivity model. Math. Methods Appl. Sci. 16, 855–875 (1993)

    MathSciNet  MATH  Google Scholar 

  8. Chen, Z., Hoffmann, K.: Numerical studies of a non-stationary Ginzburg-Landau model for superconductivity. Adv. Math. Sci. Appl. 5, 363–389 (1995)

    MathSciNet  MATH  Google Scholar 

  9. Chen, Z.: Mixed finite element methods for a dynamical Ginzburg-Landau model in superconductivity. Numer. Math. 76, 323–353 (1997)

    MathSciNet  MATH  Google Scholar 

  10. Dauge, M.: Elliptic Boundary Value Problems on Corner Domains, Lecture Notes in Math, vol. 1341. Springer, Berlin (1988)

    Google Scholar 

  11. Du, Q., Gunzburger, M., Peterson, J.: Analysis and approximation of the Ginzburg-Landau model of superconductivity. SIAM Rev. 34, 54–81 (1992)

    MathSciNet  MATH  Google Scholar 

  12. Du, Q.: Global existence and uniqueness of solutions of the time-dependent Ginzburg-Landau model for superconductivity. Appl. Anal. 53, 1–17 (1994)

    MathSciNet  MATH  Google Scholar 

  13. Duan, H., Li, S., Tan, R., Zheng, W.: A delta-regularization finite element method for a double curl problem with divergence-free constraint. SIAM J. Numer. Anal. 50, 3208–3230 (2012)

    MathSciNet  MATH  Google Scholar 

  14. Duan, H., Ma, J., Zou, J.: Mixed finite element method with Gauss’s law enforced for the Maxwell eigenproblem. SIAM J. Sci. Comput. 43, A3677–A3712 (2021)

    MathSciNet  MATH  Google Scholar 

  15. Duan, H., Zhang, Q.: Residual-based a posteriori error estimates for the time-dependent Ginzburg-Landau equations of superconductivity. J. Sci. Comput. 93, 1–47 (2022)

    MathSciNet  MATH  Google Scholar 

  16. Ern, A., Guermond, J.: Theory and practice of finite elements. Applied Mathematical Sciences. Springer-Verlag, New York (2004)

    MATH  Google Scholar 

  17. Girault, V., Raviart, P.: Finite Element Methods for Navier-Stokes Equations. Springer-Verlag, Berlin (1986)

    MATH  Google Scholar 

  18. Gropp, W., Kaper, H., Leaf, G., Levine, D., Palumbo, M., Vinokur, V.: Numerical simulation of vortex dynamics in type-II superconductors. J. Comput. Phys. 123, 254–266 (1996)

    MathSciNet  MATH  Google Scholar 

  19. Gao, H., Li, B., Sun, W.: Optimal error estimates of linearized Crank-Nicolson Galerkin FEMs for the time-dependent Ginzburg-Landau equations in superconductivity. SIAM J. Numer. Anal. 52, 1183–1202 (2014)

    MathSciNet  MATH  Google Scholar 

  20. Gao, H., Sun, W.: An efficient fully linearized semi-implicit Galerkin-mixed FEM for the dynamical Ginzburg-Landau equations of superconductivity. J. Comput. Phys. 294, 329–345 (2015)

    MathSciNet  MATH  Google Scholar 

  21. Gao, H., Sun, W.: A new mixed formulation and efficient numerical solution of Ginzburg-Landau equations under the temporal gauge. SIAM J. Sci. Comput. 38, A1339–A1357 (2016)

    MathSciNet  MATH  Google Scholar 

  22. Gao, H., Sun, W.: Analysis of linearized Galerkin-mixed FEMs for the time-dependent Ginzburg-Landau equations of superconductivity. Adv. Comput. Math. 44, 923–949 (2018)

    MathSciNet  MATH  Google Scholar 

  23. Gao, H., Sun, W.: Optimal analysis of non-uniform Galerkin-mixed finite element approximations to the Ginzburg-Landau equations in superconductivity. SIAM J. Numer. Anal. 61, 929–951 (2023)

    MathSciNet  MATH  Google Scholar 

  24. Gor’kov, L., Éliashberg, G.: Generalization of the Ginzburg-Landau equations for non-stationary problems in the case of alloys with paramagnetic impurities. Sov. Phys. JETP 27, 328–334 (1968)

    Google Scholar 

  25. Gunter, D., Kaper, H., Leaf, G.: Implicit integration of the time-dependent Ginzburg-Landau equations of superconductivity. SIAM J. Sci. Comput. 23, 1943–1958 (2002)

    MathSciNet  MATH  Google Scholar 

  26. Guo, B., Yuan, G.: Cauchy problem for the Ginzburg-Landau equation for the superconductivity model. Proc. Roy. Soc. Edinburgh Sect. A 127, 1181–1192 (1997)

    MathSciNet  MATH  Google Scholar 

  27. Hiptmair, R.: Finite elements in computational electromagnetism. Acta Numer. 11, 237–339 (2002)

    MathSciNet  MATH  Google Scholar 

  28. Hong, Q., Ma, L., Xu, J., Chen, L.: An efficient iterative method for dynamical Ginzburg-Landau equations. J. Comput. Phys. 474, 111794 (2023)

    MathSciNet  MATH  Google Scholar 

  29. Li, B., Zhang, Z.: A new approach for numerical simulation of the time-dependent Ginzburg-Landau equations. J. Comput. Phys. 303, 238–250 (2015)

    MathSciNet  MATH  Google Scholar 

  30. Li, B.: Convergence of a decoupled mixed FEM for the dynamic Ginzburg-Landau equations in nonsmooth domains with incompatible initial data. Calcolo 54, 1441–1480 (2017)

    MathSciNet  MATH  Google Scholar 

  31. Li, B., Zhang, Z.: Mathematical and numerical analysis of the time-dependent Ginzburg-Landau equations in nonconvex polygons based on Hodge decomposition. Math. Comp. 86, 1579–1608 (2017)

    MathSciNet  MATH  Google Scholar 

  32. Li, B., Yang, C.: Global well-posedness of the time-dependent Ginzburg-Landau superconductivity model in curved polyhedra. J. Math. Anal. Appl. 451, 102–116 (2017)

    MathSciNet  MATH  Google Scholar 

  33. Li, B., Wang, K., Zhang, Z.: A Hodge decomposition method for dynamic Ginzburg-Landau equations in nonsmooth domains - a second approach, Commun. Comput. Phys. 28, 768–802 (2020)

    MathSciNet  MATH  Google Scholar 

  34. Logg, A., Mardal, K., Wells, G. (eds.): Automated Solution of Differential Equations by the Finite Element Method. Springer, Berlin (2012)

    MATH  Google Scholar 

  35. Mu, M.: A linearized Crank-Nicolson-Galerkin method for the Ginzburg-Landau model. SIAM J. Sci. Comput. 18, 1028–1039 (1997)

    MathSciNet  MATH  Google Scholar 

  36. Mu, M., Huang, Y.: An alternating Crank-Nicolson method for decoupling the Ginzburg-Landau equations. SIAM J. Numer. Anal. 35, 1740–1761 (1998)

    MathSciNet  MATH  Google Scholar 

  37. Monk, P.: Finite Element Methods for Maxwell’s Equations. Oxford University Press, New York (2003)

    MATH  Google Scholar 

  38. Pack, A., Carlson, J., Wadsworth, S., Transtrum, M.: Vortex nucleation in superconductors within time-dependent Ginzburg-Landau theory in two and three dimensions: Role of surface defects and material inhomogeneities. Phys. Rev. B 101, 144504 (2020)

    Google Scholar 

  39. Qiu, W., Shi, K.: A mixed DG method and an HDG method for incompressible magnetohydrodynamics. IMA J. Numer. Anal. 40, 1356–1389 (2020)

    MathSciNet  MATH  Google Scholar 

  40. Richardson, W., Pardhanani, A., Carey, G., Ardelea, A.: Numerical effects in the simulation of Ginzburg-Landau models for superconductivity. Int. J. Numer. Meth. Engng. 59, 1251–1272 (2004)

    MathSciNet  MATH  Google Scholar 

  41. Tang, Q., Wang, S.: Time dependent Ginzburg-Landau equations of superconductivity. Phys. D 88, 139–166 (1995)

    MathSciNet  MATH  Google Scholar 

  42. Winiecki, T., Adams, C.: A fast semi-implicit finite-difference method for the TDGL equation. J. Comput. Phys. 179, 127–139 (2002)

    MathSciNet  MATH  Google Scholar 

  43. Wu, C., Sun, W.: Analysis of Galerkin FEMs for mixed formulation of time-dependent Ginzburg-Landau equations under temporal gauge. SIAM J. Numer. Anal. 56, 1291–1312 (2018)

    MathSciNet  MATH  Google Scholar 

Download references

Acknowledgements

The authors wish to thank the anonymous referees for many constructive comments that improved the paper.

Funding

This work is partially supported by National Natural Science Foundation of China under Grant Number 12231003.

Author information

Authors and Affiliations

Authors

Contributions

HG and WX have participated sufficiently in the work to take public responsibility for the content, including participation in the concept, method, analysis and writing. All authors certify that this material or similar material has not been and will not be submitted to or published in any other publication.

Corresponding author

Correspondence to Wen Xie.

Ethics declarations

Conflict of interest

All the authors declared that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gao, H., Xie, W. A Finite Element Method for the Dynamical Ginzburg–Landau Equations under Coulomb Gauge. J Sci Comput 97, 19 (2023). https://doi.org/10.1007/s10915-023-02327-x

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10915-023-02327-x

Keywords